Skip to main content

Regulatory T Cells and Tumour Immunotherapy

  • Chapter
  • First Online:
Regulatory T Cells and Clinical Application
  • 688 Accesses

Abstract

Immune responses influence the development and progression of a malignancy. However, the tumor can manipulate the immune system on its own end, often resulting in an ineffective tumor immunity and immune suppression, ablating the clinical efficacy of tumor therapy. An appreciation of the complexity of the interaction between tumor and host immune system is important for the development of effective cancer therapies. The chapter will emphasize regulatory T cells as a prominent mechanism whereby tumors escape tumor immunity and highlight the newly therapeutic strategies by targeting Treg cells in patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gershon, R.K. and K. Kondo, Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology, 1970, 18(5): 723–37.

    PubMed  CAS  Google Scholar 

  2. Sakaguchi, S., et al., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151–64.

    PubMed  CAS  Google Scholar 

  3. Suri-Payer, E., et al., CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol, 1998, 160(3): 1212–8.

    PubMed  CAS  Google Scholar 

  4. Thornton, A.M. and E.M. Shevach, CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998, 188(2): 287–96.

    Article  PubMed  CAS  Google Scholar 

  5. Berendt, M.J. and R.J. North, T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med, 1980, 151(1): 69–80.

    Article  PubMed  CAS  Google Scholar 

  6. Bursuker, I. and R.J. North, Generation and decay of the immune response to a progressive fibrosarcoma. II. Failure to demonstrate postexcision immunity after the onset of T cell-mediated suppression of immunity. J Exp Med, 1984, 159(5): 1312–21.

    Article  PubMed  CAS  Google Scholar 

  7. North, R.J. and I. Bursuker, Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells. J Exp Med, 1984, 159(5): 1295–311.

    Article  PubMed  CAS  Google Scholar 

  8. Onizuka, S., et al., Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res, 1999, 59(13): 3128–33.

    PubMed  CAS  Google Scholar 

  9. Sakaguchi, S., Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol, 2005, 6(4): 345–52.

    Article  PubMed  CAS  Google Scholar 

  10. Curiel, T.J., et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 2004, 10(9): 942–9.

    Article  PubMed  CAS  Google Scholar 

  11. Woo, E.Y., et al., Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res, 2001, 61(12): 4766–72.

    PubMed  CAS  Google Scholar 

  12. Ishibashi, Y., et al., Expression of Foxp3 in non-small cell lung cancer patients is significantly higher in tumor tissues than in normal tissues, especially in tumors smaller than 30 mm. Oncol Rep, 2006, 15(5): 1315–9.

    PubMed  CAS  Google Scholar 

  13. Sasada, T., et al., CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer, 2003, 98(5): 1089–99.

    Article  PubMed  Google Scholar 

  14. Liyanage, U.K., et al., Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol, 2002, 169(5): 2756–61.

    PubMed  CAS  Google Scholar 

  15. Appay, V., et al., New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J Immunol, 2006, 177(3): 1670–8.

    PubMed  CAS  Google Scholar 

  16. Ishida, T., et al., Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res, 2006, 66(11): 5716–22.

    Article  PubMed  CAS  Google Scholar 

  17. Yang, Z.Z., et al., Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood, 2006, 107(9): 3639–46.

    Article  PubMed  CAS  Google Scholar 

  18. Meloni, F., et al., Foxp3 expressing CD4+ CD25+ and CD8+CD28- T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol, 2006, 67(1–2): 1–12.

    Article  PubMed  CAS  Google Scholar 

  19. Ormandy, L.A., et al., Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res, 2005, 65(6): 2457–64.

    Article  PubMed  CAS  Google Scholar 

  20. Lau, K.M., et al., Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer, 2007, 96(4): 617–22.

    Article  PubMed  CAS  Google Scholar 

  21. Zou, W., Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer, 2005, 5(4): 263–74.

    Article  PubMed  CAS  Google Scholar 

  22. Zou, W., Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol, 2006, 6(4): 295–307.

    Article  PubMed  CAS  Google Scholar 

  23. Shimizu, J., S. Yamazaki, and S. Sakaguchi, Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol, 1999, 163(10): 5211–8.

    PubMed  CAS  Google Scholar 

  24. Jones, E., et al., Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun, 2002, 2: 1.

    PubMed  Google Scholar 

  25. Ko, K., et al., Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med, 2005, 202(7): 885–91.

    Article  PubMed  CAS  Google Scholar 

  26. Casares, N., et al., CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol, 2003, 171(11): 5931–9.

    PubMed  CAS  Google Scholar 

  27. Foss, F.M., DAB(389)IL-2 (denileukin diftitox, ONTAK): a new fusion protein technology. Clin Lymphoma, 2000, 1(Suppl 1): S27–31.

    Article  PubMed  Google Scholar 

  28. Foss, F.M., DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma, 2000, 1(2): 110–6; discussion 117.

    Article  PubMed  CAS  Google Scholar 

  29. Dannull, J., et al., Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest, 2005, 115(12): 3623–33.

    Article  PubMed  CAS  Google Scholar 

  30. Barnett, B., et al., Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol, 2005, 54(6): 369–77.

    Article  PubMed  CAS  Google Scholar 

  31. Attia, P., et al., Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother, 2005, 28(6): 582–92.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, W., et al., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med, 2006, 203(7): 1701–11.

    Article  PubMed  CAS  Google Scholar 

  33. Collins, A.V., et al., The interaction properties of costimulatory molecules revisited. Immunity, 2002, 17(2): 201–10.

    Article  PubMed  CAS  Google Scholar 

  34. Walunas, T.L., et al., CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1994, 1(5): 405–13.

    Article  PubMed  CAS  Google Scholar 

  35. Krummel, M.F. and J.P. Allison, CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med, 1995, 182(2): 459–65.

    Article  PubMed  CAS  Google Scholar 

  36. Waterhouse, P., et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270(5238): 985–8.

    Article  PubMed  CAS  Google Scholar 

  37. Kulkarni, A.B., et al., Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA, 1993, 90(2): 770–4.

    Article  PubMed  CAS  Google Scholar 

  38. Tivol, E.A., et al., Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3(5): 541–7.

    Article  PubMed  CAS  Google Scholar 

  39. Ueda, H., et al., Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 2003, 423(6939): 506–11.

    Article  PubMed  CAS  Google Scholar 

  40. Sansom, D.M. and L.S. Walker, The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev, 2006, 212: 131–48.

    Article  PubMed  CAS  Google Scholar 

  41. Read, S., V. Malmstrom, and F. Powrie, Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med, 2000, 192(2): 295–302.

    Article  PubMed  CAS  Google Scholar 

  42. Takahashi, T., et al., Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med, 2000, 192(2): 303–10.

    Article  PubMed  CAS  Google Scholar 

  43. Phan, G.Q., et al., Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA, 2003, 100(14): 8372–7.

    Article  PubMed  CAS  Google Scholar 

  44. Sanderson, K., et al., Autoimmunity in a phase I trial of a fully human anti-cytotoxicT-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol, 2005, 23(4): 741–50.

    Article  PubMed  CAS  Google Scholar 

  45. Attia, P., et al., Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol, 2005, 23(25): 6043–53.

    Article  PubMed  CAS  Google Scholar 

  46. Maker, A.V., et al., Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J Immunother, 2006, 29(4): 455–63.

    Article  PubMed  CAS  Google Scholar 

  47. Maker, A.V., P. Attia, and S.A. Rosenberg, Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol, 2005, 175(11): 7746–54.

    PubMed  CAS  Google Scholar 

  48. Levings, M.K., R. Sangregorio, and M.G. Roncarolo, Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med, 2001, 193(11): 1295–302.

    Article  PubMed  CAS  Google Scholar 

  49. Jonuleit, H., et al., Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med, 2001, 193(11): 1285–94.

    Article  PubMed  CAS  Google Scholar 

  50. Baecher-Allan, C., et al., CD4+CD25+ regulatory cells from human peripheral blood express very high levels of CD25 ex vivo. Novartis Found Symp, 2003, 252: 67–88; discussion 88–91, 106–14.

    Article  PubMed  CAS  Google Scholar 

  51. Ng, W.F., et al., Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood, 2001, 98(9): 2736–44.

    Article  PubMed  CAS  Google Scholar 

  52. Liu, H., et al., CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol, 2003, 171(10): 5012–7.

    PubMed  CAS  Google Scholar 

  53. Salomon, B., et al., B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity, 2000, 12(4): 431–40.

    Article  PubMed  CAS  Google Scholar 

  54. Read, S., et al., Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol, 2006, 177(7): 4376–83.

    PubMed  CAS  Google Scholar 

  55. Chen, W., W. Jin, and S.M. Wahl, Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. J Exp Med, 1998, 188(10): 1849–57.

    Article  PubMed  CAS  Google Scholar 

  56. McHugh, R.S., et al., CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 2002, 16(2): 311–23.

    Article  PubMed  CAS  Google Scholar 

  57. Shimizu, J., et al., Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol, 2002, 3(2): 135–42.

    Article  PubMed  CAS  Google Scholar 

  58. Kanamaru, F., et al., Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol, 2004, 172(12): 7306–14.

    PubMed  CAS  Google Scholar 

  59. Shevach, E.M. and G.L. Stephens, The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol, 2006, 6(8): 613–8.

    Article  PubMed  CAS  Google Scholar 

  60. Kohm, A.P., J.S. Williams, and S.D. Miller, Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J Immunol, 2004, 172(8): 4686–90.

    PubMed  CAS  Google Scholar 

  61. Stephens, G.L., et al., Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol, 2004, 173(8): 5008–20.

    PubMed  CAS  Google Scholar 

  62. Turk, M.J., et al., Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med, 2004, 200(6): 771–82.

    Article  PubMed  CAS  Google Scholar 

  63. Ronchetti, S., et al., GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol, 2004, 34(3): 613–22.

    Article  PubMed  CAS  Google Scholar 

  64. Wu, Y., et al., FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell, 2006, 126(2): 375–87.

    Article  PubMed  CAS  Google Scholar 

  65. Chen, C., et al., Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem, 2006, 281(48): 36828–34.

    Article  PubMed  CAS  Google Scholar 

  66. Bettelli, E., M. Dastrange, and M. Oukka, Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA, 2005, 102(14): 5138–43.

    Article  PubMed  CAS  Google Scholar 

  67. Loh, C., et al., Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J Biol Chem, 1996, 271(18): 10884–91.

    Article  PubMed  CAS  Google Scholar 

  68. Ho, S., et al., The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol, 1996, 80(3 Pt 2): S40–5.

    Article  PubMed  CAS  Google Scholar 

  69. Awwad, M. and R.J. North, Cyclophosphamide (Cy)-facilitated adoptive immunotherapy of a Cy-resistant tumour. Evidence that Cy permits the expression of adoptive T-cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden. Immunology, 1988, 65(1): 87–92.

    PubMed  CAS  Google Scholar 

  70. Ghiringhelli, F., et al., CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol, 2004, 34(2): 336–44.

    Article  PubMed  CAS  Google Scholar 

  71. Lutsiak, M.E., et al., Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood, 2005, 105(7): 2862–8.

    Article  PubMed  CAS  Google Scholar 

  72. Caproni, M., et al., The effects of tacrolimus ointment on regulatory T lymphocytes in atopic dermatitis. J Clin Immunol, 2006, 26(4): 370–5.

    Article  PubMed  CAS  Google Scholar 

  73. San Segundo, D., et al., Calcineurin inhibitors affect circulating regulatory T cells in stable renal transplant recipients. Transplant Proc, 2006, 38(8): 2391–3.

    Article  PubMed  CAS  Google Scholar 

  74. Frank, D.A., S. Mahajan, and J. Ritz, Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling. Nat Med, 1999, 5(4): 444–7.

    Article  PubMed  CAS  Google Scholar 

  75. Nishibori, T., et al., Impaired development of CD4+ CD25+ regulatory T cells in the absence of STAT1: increased susceptibility to autoimmune disease. J Exp Med, 2004, 199(1): 25–34.

    Article  PubMed  CAS  Google Scholar 

  76. Beyer, M., et al., Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood, 2005, 106(6): 2018–25.

    Article  PubMed  CAS  Google Scholar 

  77. Baecher-Allan, C., et al., CD4+CD25high regulatory cells in human peripheral blood. J Immunol, 2001, 167(3): 1245–53.

    PubMed  CAS  Google Scholar 

  78. Hoffmann, P., et al., Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood, 2004, 104(3): 895–903.

    Article  PubMed  CAS  Google Scholar 

  79. Cavani, A., et al., Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol, 2003, 171(11): 5760–8.

    PubMed  CAS  Google Scholar 

  80. Iellem, A., et al., Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med, 2001, 194(6): 847–53.

    Article  PubMed  CAS  Google Scholar 

  81. Iellem, A., L. Colantonio, and D. D'Ambrosio, Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T cells. Eur J Immunol, 2003, 33(6): 1488–96.

    Article  PubMed  CAS  Google Scholar 

  82. Stassen, M., et al., Human CD25+ regulatory T cells: two subsets defined by the integrins alpha 4 beta 7 or alpha 4 beta 1 confer distinct suppressive properties upon CD4+ T helper cells. Eur J Immunol, 2004, 34(5): 1303–11.

    Article  PubMed  CAS  Google Scholar 

  83. Allakhverdi, Z., et al., Expression of CD103 identifies human regulatory T-cell subsets. J Allergy Clin Immunol, 2006, 118(6): 1342–9.

    Article  PubMed  CAS  Google Scholar 

  84. Chen, X., et al., Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. Eur J Immunol, 2006, 36(3): 671–80.

    Article  PubMed  CAS  Google Scholar 

  85. Hultkrantz, S., S. Ostman, and E. Telemo, Induction of antigen-specific regulatory T cells in the liver-draining celiac lymph node following oral antigen administration. Immunology, 2005, 116(3): 362–72.

    Article  PubMed  CAS  Google Scholar 

  86. Wei, S., I. Kryczek, and W. Zou, Regulatory T-cell compartmentalization and trafficking. Blood, 2006, 108(2): 426–31.

    Article  PubMed  CAS  Google Scholar 

  87. Zou, L., et al., Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res, 2004, 64(22): 8451–5.

    Article  PubMed  CAS  Google Scholar 

  88. Kryczek, I., et al., Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol, 2006, 177(1): 40–4.

    PubMed  CAS  Google Scholar 

  89. Schramm, C., et al., TGFbeta regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo. Int Immunol, 2004, 16(9): 1241–9.

    Article  PubMed  CAS  Google Scholar 

  90. Chen, W., et al., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med, 2003, 198(12): 1875–86.

    Article  PubMed  CAS  Google Scholar 

  91. Walker, M.R., et al., Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest, 2003, 112(9): 1437–43.

    PubMed  CAS  Google Scholar 

  92. Walker, M.R., et al., De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci USA, 2005, 102(11): 4103–8.

    Article  PubMed  CAS  Google Scholar 

  93. Morgan, M.E., et al., Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum Immunol, 2005, 66(1): 13–20.

    Article  PubMed  CAS  Google Scholar 

  94. Curotto de Lafaille, M.A., et al., CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol, 2004, 173(12): 7259–68.

    PubMed  CAS  Google Scholar 

  95. Liang, S., et al., Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med, 2005, 201(1): 127–37.

    Article  PubMed  CAS  Google Scholar 

  96. Apostolou, I. and H. von Boehmer, In vivo instruction of suppressor commitment in naive T cells. J Exp Med, 2004, 199(10): 1401–8.

    Article  PubMed  CAS  Google Scholar 

  97. von Boehmer, H., Peptide-based instruction of suppressor commitment in naive T cells and dynamics of immunosuppression in vivo. Scand J Immunol, 2005, 62(Suppl 1): 49–54.

    Article  Google Scholar 

  98. Knoechel, B., et al., Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med, 2005, 202(10): 1375–86.

    Article  PubMed  CAS  Google Scholar 

  99. Kretschmer, K., et al., Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol, 2005, 6(12): 1219–27.

    Article  PubMed  CAS  Google Scholar 

  100. Ghiringhelli, F., et al., Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med, 2005, 202(7): 919–29.

    Article  PubMed  CAS  Google Scholar 

  101. Zhou, G. and H.I. Levitsky, Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol, 2007, 178(4): 2155–62.

    PubMed  CAS  Google Scholar 

  102. Nakamura, K., et al., TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol, 2004, 172(2): 834–42.

    PubMed  CAS  Google Scholar 

  103. Ghiringhelli, F., et al., CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med, 2005, 202(8): 1075–85.

    Article  PubMed  CAS  Google Scholar 

  104. Liu, V.C., et al., Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol, 2007, 178(5): 2883–92.

    PubMed  CAS  Google Scholar 

  105. Schlingensiepen, K.H., et al., Targeted tumor therapy with the TGF-beta2 antisense compound AP 12009. Cytokine Growth Factor Rev, 2006, 17(1–2): 129–39.

    Google Scholar 

  106. Fakhrai, H., et al., Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA, 1996, 93(7): 2909–14.

    Article  PubMed  CAS  Google Scholar 

  107. Fakhrai, H., et al., Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther, 2006, 13(12): 1052–60.

    Article  PubMed  CAS  Google Scholar 

  108. Reuben, J.M., et al., Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer, 2006, 106(11): 2437–44.

    Article  PubMed  CAS  Google Scholar 

  109. Maker, A.V., et al., Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol, 2005, 12(12): 1005–16.

    Article  PubMed  Google Scholar 

  110. Blansfield, J.A., et al., Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother, 2005, 28(6): 593–8.

    Article  PubMed  CAS  Google Scholar 

  111. Hodi, F.S., et al., Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA, 2003, 100(8): 4712–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kryczek, I., Zou, W. (2008). Regulatory T Cells and Tumour Immunotherapy. In: Jiang, S. (eds) Regulatory T Cells and Clinical Application. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77909-6_20

Download citation

Publish with us

Policies and ethics