Skip to main content

Theoretical Basis of Current Instability in Transistor Structures

  • Chapter
Physical Limitations of Semiconductor Devices
  • 1604 Accesses

From the physical point of view, a semiconductor device during operation presents itself as an open, distributed, and dissipative system. This means permanent exchange of energy and matter between the transistor and the ambient space. Therefore, the transistor’s state at any moment of time can be described by a number of the distributed physical parameters: the temperature T(x,y,z), electric field E(x,y,z), electron-hole current density j(x,y,z), and other in general distributed parameters. Distribution of these parameters depends on time, due to applied external conditions, and on the internal processes in the transistor itself. Under electrical load the transistor is a nonequilibrium system in principle. The dynamic equilibrium of the semiconductor device under operation is far from thermodynamic equilibrium. This fact results in the possibility of formation of rather complex multiple thermoelectrical instabilities in the device. In particular, the transition of the semiconductor device from one state to another may become accompanied by a strong current redistribution or filamentation [15-17].

In spite of a wide variety of observed current filamentation scenarios and mechanisms to some extent all of them are based on the same physical principles. Theoretical analysis of transistors as a distributed nonlinear system was first completed in [17-19]. It has been particularly shown that the phenomenon of S-shape I-V characteristic formation in semiconductor structures presents itself as a particular case of the fundamental behavior of a nonlinear dynamic system in non-equilibrium conditions [19]. This chapter focuses only on general principles of current filamentation phenomena in phenomenological semiconductor structures followed by a discussion of a number of general problems for different types of semiconductor devices, conductivity modulation, and spatial current instability in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Theoretical Basis of Current Instability in Transistor Structures. In: Physical Limitations of Semiconductor Devices. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74514-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74514-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74513-8

  • Online ISBN: 978-0-387-74514-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics