Skip to main content

System Simulation

  • Chapter
  • 612 Accesses

Overview

System simulation means the simulation of very complex and often also heterogeneous systems.

To emphasize these aspects, sometimes it is called overall system simulation. In system simulation models at the higher abstraction levels are generally used. Of course, there are many modeling and simulation aspects in common with those described in the foregoing chapters 10 (Analog Simulation), 11 (Digital Simulation) and, most of all, 12 (Mixed-Signal Simulation). But there are also typical specialties, which led to the development of specialized system simulators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.tm.agilent.com/tmo/hpeesof/products/ads/

  2. http://www.analogy.com

  3. Antao, B.; Brodersen, A.: ‘Behavioral simulation for analog system design verification’. IEEE Trans. VLSI 3(1995)3, 417–429

    Google Scholar 

  4. http://www.ansys.com

    Google Scholar 

  5. Antao, B. (Ed.): ‘Modeling and Simulation of Mixed Analog-Digital Systems’. Dordrecht: Kluwer 1996

    Google Scholar 

  6. Atherton, D. P.; Borne, P.: ‘Concise Encyclopedia of Modeling and Simulation’. Pergamon Press,Oxford 1992. A global overview for continuous-value simulation (solution of differential equations, Z-transform, identification)

    Google Scholar 

  7. http://www.ilogix.com

    Google Scholar 

  8. Banks, J. (Ed.): ‘Handbook of Simulation’. Wiley, New York 1998. A comprehensive overview of discrete simulators (simulation methods and a short description of simulators such as GPSS/H, SIMSCRIPT and SIMPLE++)

    Google Scholar 

  9. Boyle, G. R.; Cohn, B. M.; Pederson, D. O.; Solomon, J. E.: ‘Macromodeling of integrated circuit operational amplifiers’. IEEE J. Solid-State Circuits SC-9(1974)6, 353–363

    Google Scholar 

  10. Breitenecker, F.; Ecker, H.; Bausch-Gall, I.: ‘Simulieren mit ACSL’. Vieweg, Braunschweig 1993. See also: http://acslsim.com

    Google Scholar 

  11. Bacher, T.; Engelmann, F.; Knoechel, U.; Schwarz, P.: ‘Multi-Level-Simulation beim Entwurf eines ASTRA Digital Empfaengers’. 4. GMM/ITG-Fachtagung ‘Analog ‘96’, Berlin 1996, 181–188

    Google Scholar 

  12. Buck, J.; Ha, S.; Lee, E. A.; Messerschmitt, D. G.: ‘Ptolemy: A framework for simulating and prototyping heterogeneous systems’. Intern. J. Computer Simulation. 4 (1994) 155–182

    Google Scholar 

  13. Berge, J.-M.; Levia, Oz; Rouillard, J. (Hrg.): ‘Current Issues in Electronic Modeling’. Kluwer, Dordrecht, since 1995. Many volumes comprising current developments in the area of the modeling at all abstraction levels (10 volumes so far):

    Google Scholar 

  14. Model Generation in Electronic Modeling. 1995

    Google Scholar 

  15. Modeling in Analog Design. 1995 (also the roots of VHDL-AMS are presented)

    Google Scholar 

  16. High-Level System Modeling: Specification Languages. 1995

    Google Scholar 

  17. High-Level System Modeling: Specification and Design Methodologies. 1996

    Google Scholar 

  18. Hardware Component Modeling. 1996

    Google Scholar 

  19. Meta-Modeling: Performance and Information Modeling. 1996

    Google Scholar 

  20. Object-Oriented Modeling. 1996

    Google Scholar 

  21. HW/SW Co-Design and Co-Verification. 1997

    Google Scholar 

  22. Models in System Design. 1997

    Google Scholar 

  23. Analog and Mixed-Signal Hardware Description Languages. 1997

    Google Scholar 

  24. Bathe, K. J.: ‘Finite Element Procedures’. Prentice-Hall, New Jersey 1996

    Google Scholar 

  25. http://www.cadence.com

    Google Scholar 

  26. Cellier, F. E.: ‘Continuous System Modeling’. Springer, New York/Berlin 1991.

    Book  MATH  Google Scholar 

  27. Clauss, C.; Gruschwitz, R.; Schwarz, P.; Wuensche, S.: Simulation mikrosystemtechnischer Aufgaben mit gekoppelten Simulatoren. 2. Chemnitzer Fachtagung ‘Mikrosystemtechnik–Mikromechanik Mikroelektronik’, TU Chemnitz-Zwickau 1995, 92–101

    Google Scholar 

  28. Chen, J. X.; Frieder, O.: ‘Applications of computer graphics software tools’. IEEE Trans. Computing in Science Engineering 1(1999)6, 82–87

    Google Scholar 

  29. Christen, E.; Bakalar, K.: ‘VHDL-AMS–A Hardware Description Language for analog and mixed-signal applications’. IEEE Trans. CAS-II, 46(1999)10, 1263–1272

    Google Scholar 

  30. Connelly, J. A.; Choi, P.: Macromodeling with SPICE. Prentice Hall, New Jersey, 1992

    Google Scholar 

  31. Duran, P. A.: ‘A Practical Guide to Analog Behavioral Modeling for IC System Design’. Kluwer, Dordrecht 1998

    Book  MATH  Google Scholar 

  32. http://www.Dynasim.se

    Google Scholar 

  33. Eccardt, P. C. et al.: ‘Coupled finite element and network simulation for microsystem components’. Proc. MICROSYSTEM Technologies’96, Potsdam, Sept. 1996, 145–150

    Google Scholar 

  34. Schwarz, P.; Einwich, K.; Haase, J.; Prescher, R.: ‘Mixed-mode design: experiences with multi-level macromodeling’. Published in: Huijsing, J.H. et al.(Eds.): Analog Circuit Design. Proc. Workshop Advances in Analog Circuit Design, Villach 1995. Kluwer, Boston 1995, 181–203

    Google Scholar 

  35. Engelmann, F.; Jentschel, H.-J.; Schwarz, P. (Hrg.): Proc. Workshop ‘Modellierung und Simulation in der Nachrichtentechnik’. Dresden, November 1995

    Google Scholar 

  36. Einwich, K.; Schwarz, P.; Trappe, P.; Zojer, H.: ‘Simulatorkopplung fuer den Entwurf komplexer Schaltkreise der Nachrichtentechnik’. 7. ITG-Fachtagung “Mikroelektronik fuer die Informationstechnik”, Chemnitz, 18./19. Maerz 1996, 139–144

    Google Scholar 

  37. Fischer, W.-J. (Hrg.): ‘Mikrosystemtechnik’. Vogel, Wuerzburg 2000

    Google Scholar 

  38. Gerlach, G.; Doetzel, W.: ‘Grundlagen der Mikrosystemtechnik’. Hanser, Muenchen 1997

    Google Scholar 

  39. Goedecke, M.; Hamad, H.; Huss, S. A.: ‘A methodology for the development of system-level simulation models for analog functional blocks’. AEÜ 49(1995)2, 72–80

    Google Scholar 

  40. http://www.cs.dartmouth.edu/gnuplot_info.html

    Google Scholar 

  41. Hartung, J.; Knoechel, U.: ‘Approaches to consider analog RF components in system level simulation of mobile communications’. Proc. ANALOG’02, Bremen 2002, 219–224. See also: http://www.cadence.com/rf_notes.html

    Google Scholar 

  42. Haase, J.; Reitz, S.; Schwarz, P.: ‘Behavioral modeling for heterogeneous systems based on FEM descriptions’. Proc. IEEE Intern. Workshop Behavioral Modeling and Simulation BMAS99, Orlando, FL, October 1999

    Google Scholar 

  43. Huss, S. A.: Model Engineering in Mixed-Signal Circuit Design. Kluwer, Boston 2001

    MATH  Google Scholar 

  44. http://www.rsinc.com

    Google Scholar 

  45. http://vni/products/imsl

    Google Scholar 

  46. http://www.iti.de

    Google Scholar 

  47. http://java.sun.com/products/java-media/2D

    Google Scholar 

  48. Jeruchim, M. C.; Balaban, P.; Shanmugan, K. S.: ‘Simulation of Communication Systems’. Plenum Press, New York 1992

    Book  Google Scholar 

  49. Karnopp, D. C.; Margolis, D. L.; Rosenberg, R. C.: ‘System Dynamics: A Unified Approach’. Wiley, New York 1990

    Google Scholar 

  50. Koenig, H. E.; Blackwell, W. A.: ‘Electromechanical System Theory’. McGraw-Hill, New York 1961

    MATH  Google Scholar 

  51. Korn, G. A.: ‘Interactive Dynamic System Simulation’. McGraw-Hill, New York 1989

    MATH  Google Scholar 

  52. Knoechel, U.; Tannert, U.; Haufe, J.; Schwarz, P.: ‘Verifikation nachrichtentechnischer Systeme mit Systemsimulation und HW/SW-Cosimulation’. GI/ITG/GME Workshop, Paderborn 1998, 175–184.

    Google Scholar 

  53. Kundert, K. S.; White, J. K.; Sangiovanni-Vincentelli, A.: ‘Steady-State Methods for Simulating Analog and Microwave Circuits’. Kluwer, Dordrecht 1990

    Book  MATH  Google Scholar 

  54. Leszak, M.; Eggert, H.: ‘Petri-Netz-Methoden und Werkzeuge’. Informatik-Fachberichte 197, Springer-Verlag, Berlin, 1989

    Google Scholar 

  55. Lee, E. A.; Messerschmitt, D. G.: ‘Digital Communication’. Kluwer, Dordrecht 1994

    Book  Google Scholar 

  56. Lenk, A.: ‘Elektromechanische Systeme’ (3 vol.). Verlag Technik, Berlin 1971–1973

    Google Scholar 

  57. Lorenz, G.; Neul, R.: ‘Network-type modeling of micromachined sensor systems’. Proc. MSM98

    Google Scholar 

  58. Mantooth, H. A.; Fiegenbaum, M. F.: ‘Modeling with an Analog Hardware Description Language’. Kluwer, Dordrecht 1994

    MATH  Google Scholar 

  59. http://www.isi.com/products/matrixx/

  60. http://www.mathworks.com

  61. http://www.mentor.org

  62. Modelica: see http://modelica.org; many links to Modelica-related publications

    Google Scholar 

  63. Neul, R. et al.: ‘A modeling approach to include mechanical microsystem components into system simulation’. Proc. Design, Automation Test Conf. (DATE’98), Paris, 1998, 510–517

    Google Scholar 

  64. Pelz, G. et al.: ‘MEXEL: Simulation of microsystems in a circuit simulator using automatic electro-mechanical modeling’. Proc. Microsystem Technologies, VDE-Verlag, Berlin 1994, 651–657.

    Google Scholar 

  65. Rammig, F. J.: ‘Systematischer Entwurfdigitaler Systeme’. Teubner, Stuttgart 1989

    Book  Google Scholar 

  66. Rammig, F. J.: ‘System Level Design’. In: Mermet, J. (ed.): Fundamentals and Standards in Hardware Description Languages. Kluwer, Dordrecht 1993, 109–151

    Chapter  Google Scholar 

  67. Reichl, H.; Obermeier, E. (Eds.): ‘MICROSYSTEM Technology 98’. Proc. 6. Intern. Conference Potsdam VDE-Verlag, Berlin 1998

    Google Scholar 

  68. Reinschke, K.; Schwarz, P.: ‘Verfahren zur rechnergestuetzten Analyse linearer Netzwerke’. Akademie-Verlag, Berlin 1976.

    MATH  Google Scholar 

  69. Romanowicz, B. F.: ‘Methodology for the Modeling and Simulation of Microsystems’. Kluwer, Dordrecht 1998

    Book  Google Scholar 

  70. Senturia, S.; Aluru, N. R.; White, J.: ‘Simulating the behavior of MEMS devices: computational methods and needs’. IEEE Trans. Computational Science Engineering, January 1997, 30–54

    Google Scholar 

  71. Schwarz, P.; Clauß, C.; Einwich, K.;Knoechel, U.; Matz, K.: ‘Hybride Simulation nachrichtentechnischer Systeme’. 12. Symposium Simulationstechnik Zuerich, 15.-18. 9. 1998, 67–74

    Google Scholar 

  72. Schwarz, P.; Haase, J.: ‘Behavioral modeling of complex heterogeneous microsystems’. Proc. 1st Intern. Forum on Design Languages (FDL’98), Lausanne, Sept. 1998, 53–62

    Google Scholar 

  73. Senturia, S. D.: ‘CAD challenges for microsensors, microactuators, and microsystems’. Proc. IEEE 86(1998)8,1611–1626

    Google Scholar 

  74. http://www.ansoft.com/about/academics/simplorer_sv/

    Google Scholar 

  75. Senturia, S. D.: ‘Microsystem Design’. Kluwer, Boston 2001

    Google Scholar 

  76. Saleh, R.; Jou, S.-J.; Newton, A. R.: ‘Mixed-Mode Simulation and Analog Multilevel Simulation’. Kluwer, Dordrecht 1994

    Book  MATH  Google Scholar 

  77. http.//www.dolphin.fr

    Google Scholar 

  78. Schneider, P.; Parodat, S.; Schneider, A., Schwarz, P.: ‘A modular approach for simulation-based optimization of MEMS’. Proc. SPIE Conf. Design, Modeling, and Simulation in Microelectronics, Singapore 2000, pp. 71–82.

    Google Scholar 

  79. http//:www.synopsys.com

    Google Scholar 

  80. Teegarden, D.; Lorenz, G.; Neul, R.: ‘How to model and simulate microgyroscopic systems’. IEEE Spectrum 35(1998)7, 67–75

    Google Scholar 

  81. http://vaps.org

  82. Information about VHDL-AMS (VHDL –- Analog and Mixed Signal Extensions): http://www.vhdl.org/analog/undhttp://www.vhdl-ams.com/

    Google Scholar 

  83. Wachutka, G.: ‘Tailored modeling: a way to the ‘virtual microtransducer fab’ ?’ Sensor and Actuators A 46–47 (1995), 603–612

    Article  Google Scholar 

  84. Wuensche, S.; Clauss, C.; Schwarz, P.; Winkler, F.: ‘Electro-thermal simulation using simulator coupling’. IEEE Trans. VLSI 5(1997)3, 277–282

    Google Scholar 

  85. Zienkiewicz, O. C.; Taylor, R. L.: ‘The Finite Element Method’ (2 vol.). McGraw-Hill, New York 1994

    MATH  Google Scholar 

  86. Schwarz, P.: ‘Physically oriented modeling of heterogeneous systems’. Mathematics and Computers in Simulation 53 (2000), 333–344

    Article  Google Scholar 

  87. Haase, J.: ‘Rules for analog and mixed-signal VHDL-AMS modeling’. Proc. FDL’03, Frankfurt 2003

    Google Scholar 

  88. Haase, J.; Bastian, Reitz, S.: ‘VHDL-AMS in MEMS design flow’. Proc. FDL’02, Marseille, France, September 24–27, 2002

    Google Scholar 

  89. Cooper, R. S.: ‘The Designer’s Guide to Analog Mixed-Signal Modeling’. Avant! Corp., Beaverton 2001

    Google Scholar 

  90. Ashenden, P. J.; Peterson, G. D.; Teegarden, D. A.: ‘The System Designer’s Guide to VHDL-AMS’. Morgan Kaufmann Publishers, 2002

    Google Scholar 

  91. Schwarz, P.; Schneider, P.: ‘Model library and tool support for MEMS simulation’. SPIE’s conference MICROELECTRONIC AND MEMS TECHNOLOGY, Edinburgh, Scotland 2001, 10–23

    Google Scholar 

  92. Reitz, S., Bastian, J.; Haase, J.; Schneider, P.; Schwarz, P.: ‘System level modeling of microsystems using order reduction methods’. Symp. Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, 2002, 365–373

    Google Scholar 

  93. Mann, H.: Multipole and multiport approach to mixed energy-domain systems. Proc. 1995 IEEE Int.Symp. on Circuits and Systems, Seattle 1995, 676–679. See also http://icosym.cvut.cz/course/

    Google Scholar 

  94. Groetker, T.; Liao, S.; Martin, G.; Swan, S.: ‘System Design with SystemC’. Kluwer, Boston2002. See also: http://www.systemc.org/

    Google Scholar 

  95. Mueller, W.; Rosenstiel, W.; Ruf, W.: ‘SystemC: Methodologies and Applications’. Kluwer, Boston 2003

    MATH  Google Scholar 

  96. Einwich, K.; Schwarz, P.; Grimm, C.; Waldschmidt, K.: ‘Mixed-signal extensions for SystemC’. Proc. FDL’02, Marseille, France 2002

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwarz, P. (2003). System Simulation. In: Jansen, D. (eds) The Electronic Design Automation Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73543-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73543-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5369-8

  • Online ISBN: 978-0-387-73543-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics