Skip to main content

Myeloid-Derived Suppressor Cells

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 601))

Abstract

The development of tumor-specific T cell tolerance is largely responsible for tumor escape. Accumulation of myeloid-derived suppressor cells (MDSCs) in animal tumor models as well as in cancer patients is involved in tumor-associated T cell tolerance. In recent years, it has become increasingly evident that MDSCs bring about antigen-specific T cell tolerance by various mechanisms, which is the focus of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almand, B., Clark, J.I., Nikitina, E., English, N.R., Knight, S.C., Carbone, D.P. and Gabrilovich, D.I. (2001) Increased production of immature myeloid cells in cancer patients. A mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689.

    PubMed  CAS  Google Scholar 

  • Almand, B., Resser, J., Lindman, B., Nadaf, S., Clark, J., Kwon, E., Carbone, D. and Gabrilovich, D. (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 6, 1755–1766.

    PubMed  CAS  Google Scholar 

  • Beck, C., Schreiber, K., Schreiber, H. and Rowley, D. (2001) C-kit+ FcR+ myelocytes are increased in cancer and prevent the proliferation of fully cytolytic T cells in the presence of immune serum. Eur. J. Immunol. 33, 19–28.

    Article  Google Scholar 

  • Boucher, J.L., Moali, C. and Tenu, J.P. (1999) Nitric oxyde biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell. Mol. Life Sci. 55, 1015–1028.

    Article  PubMed  CAS  Google Scholar 

  • Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N. and Zanovello, P. (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96, 3838.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Casic, T., Gri, G., Gallana, K., Borsellino, G., Marrigo, I., Battistini, L., Iafrate, M., Prayer-Galletti, U., Pagano, F. and Viola, A. (2005) Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med. 201, 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  • Bronte, V., Chappell, D.B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P. and Restifo, N.P. (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 162, 5728–5737.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Serafini, P., Appoloni, E. and Zanovello, P. (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother. 24, 431–446.

    Article  PubMed  CAS  Google Scholar 

  • Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D.M., Staib, C., Lowel, M., Sutter, G., Colombo, M.P. and Zanovello, P. (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170, 270–278.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Wang, M., Overwijk, W., Surman, D., Pericle, F., Rosenberg, S.A. and Restifo, N.P. (1998) Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol. 161, 5313–5320.

    PubMed  CAS  Google Scholar 

  • Cauley, L., Miller, E., Yen, M. and Swain, S. (2000) Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma. J. Immunol. 165, 6056.

    PubMed  CAS  Google Scholar 

  • De Santo, C., Serafini, P., Marigo, I., Dolcetti, L., Bolla, M., Del Soldato, P., Melani, C., Guiducci, C., Colombo, M., Iezzi, M., Musiani, P., Zanovello, P. and Bronte, V. (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl. Acad. Sci. USA 102, 4185–4190.

    Article  PubMed  CAS  Google Scholar 

  • Finke, J., Ferrone, S., Frey, A., Mufson, A. and Ochoa, A. (1999) Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol. Today 20, 158–160.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D. (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 4, 941–952.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D. and Pisarev, V. (2003) Tumor escape from immune response: mechanisms and targets of activity. Curr. Drug Targets 4, 525–536.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D.I., Velders, M., Sotomayor, E. and Kast, W.M. (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 5398–5406.

    PubMed  CAS  Google Scholar 

  • Hengesbach, L. and Hoag, K. (2004) Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J. Nutr. 134, 2653–2659.

    PubMed  CAS  Google Scholar 

  • Hestdal, K., Ruscetti, F., Ihle, J., Jacobsen, S., Dubois, C., Kopp, W., Longo, D. and Keller, J. (1991) Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J. Immunol. 147, 22–28.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S., Cheng, F., Yu, B., Nefedova, Y., Sotomayor, E., Lush, R. and Gabrilovich, D.I. (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S. and Gabrilovich, D.I. (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J. Leukoc. Biol. 74, 186–196.

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev, S. and Gabrilovich, D.I. (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J. Immunol. 174, 4880–4891.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S., Li, Y. and Chen, S.-H. (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J. Immunol. 165, 779–785.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S., Nagaraj, S. and Gabrilovich, D.I. (2005) Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J. Immunol. 175, 4583–4592.

    PubMed  CAS  Google Scholar 

  • Kusmartsev, S., Nefedova, Y., Yoder, D. and Gabrilovich, D.I. (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172, 989–999.

    PubMed  CAS  Google Scholar 

  • Kuwata, T., Wang, I., Tamura, T., Ponnamperuma, R., Levine, R., Holmes, K., Morse, H., De Luca, L. and Ozato, K. (2000) Vitamin A deficiency in mice causes a systemic expansion of myeloid cells. Blood 95, 3349–3356.

    PubMed  CAS  Google Scholar 

  • Lathers, D., Clark, J., Achille, N. and Young, M. (2004) Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol. Immunother. 53, 422–430.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Pan, P.Y., Gu, P., Xu, D. and Chen, S.H. (2004) Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res. 64, 1130–1139.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Van Ginderachter, J., Brys, L., De Baetselier, P., Raes, G. and Geldhof, A. (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J. Immunol. 170, 5064–5074.

    PubMed  CAS  Google Scholar 

  • Melani, C., Chiodoni, C., Forni, G. and Colombo, M.P. (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102, 2138–2145.

    Article  PubMed  CAS  Google Scholar 

  • Mencacci, A., Montagnoli, C., Bacci, A., Cenci, E., Pitzurra, L., Spreca, A., Kopf, M., Sharpe, A. and Romani, L. (2002) CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J. Immunol. 169, 3180–3190.

    PubMed  CAS  Google Scholar 

  • Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A.M., Frost, T.J., Lush, R.M., Antonia, S. and Gabrilovich, D.I. (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307.

    Article  PubMed  CAS  Google Scholar 

  • Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y. and Saito, T. (1996) Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T cell receptor complex and antigen-specific T cell responses. Proc. Natl. Acad. Sci. USA 93, 13119–13124.

    Article  PubMed  CAS  Google Scholar 

  • Pandit, R., Lathers, D., Beal, N., Garrity, T. and Young, M. (2000) CD34+ immune suppressive cells in the peripheral blood of patients with head and neck cancer. Ann. Otol. Rhinol. Laryngol. 109, 749–754.

    PubMed  CAS  Google Scholar 

  • Pelaez, B., Campillo, J., Lopez-Asenjo, J. and Subiza, J. (2001) Cyclophosphamide induces the development of early myeloid cells suppressing tumor growth by a nitric oxide-dependent mechanism. J. Immunol. 166, 6608.

    PubMed  CAS  Google Scholar 

  • Rodriguez, P.C., Quiceno, D.G., Zabaleta, J., Ortiz, B., Zea, A.H., Piazuelo, M.B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E.M., Antonia, S., Ochoa, J.B. and Ochoa, A.C. (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T cell receptor expression and antigen-specific T cell responses. Cancer Res. 64, 5839–5849.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, P.C., Zea, A.H., Culotta, K.S., Zabaleta, J., Ochoa, J.B. and Ochoa, A.C. (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J. Biol. Chem. 277, 21123–21129.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, P.C., Zea, A.H., DeSalvo, J., Culotta, K.S., Zabaleta, J., Quiceno, D.G., Ochoa, J.B. and Ochoa, A.C. (2003) L-Arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 171, 1232–1239.

    PubMed  CAS  Google Scholar 

  • Saio, M., Radoja, S., Marino, M. and Frey, A.B. (2001) Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J. Immunol. 167, 5583–5593.

    PubMed  CAS  Google Scholar 

  • Salvadori, S., Martinelli, G. and Zier, K. (2000) Resection of solid tumors reverses T cell defects and restores protective immunity. J. Immunol. 164, 2214.

    PubMed  CAS  Google Scholar 

  • Schmielau, J. and Finn, O.J. (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T cell function in advanced cancer patients. Cancer Res. 61, 4756–4760.

    PubMed  CAS  Google Scholar 

  • Seung, L., Rowley, D., Dubeym, P. and Schreiber, H. (1995) Synergy between T cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc. Natl. Acad. Sci. USA 92, 6254–6258.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, P., Clements, V. and Ostrand-Rosenberg, S. (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 174, 636–645.

    PubMed  CAS  Google Scholar 

  • Subiza, J., Vinuela, J., Rodriguez, R. and De la Concha, E. (1989) Development of splenic natural suppressor (NS) cells in Ehrlich tumor-bearing mice. Int. J. Cancer 44, 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Terabe, M., Matsui, S., Park, J.M., Mamura, M., Noben-Trauth, N., Donaldson, D.D., Chen, W., Wahl, S.M., Ledbetter, S., Pratt, B., Letterio, J.J., Paul, W.E. and Berzofsky, J.A. (2003) Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med. 198, 1741–1752.

    Article  PubMed  CAS  Google Scholar 

  • Walkley, C., Yuan, Y., Chandraratna, R. and McArthur, G. (2002) Retinoic acid receptor antagonism in vivo expands the numbers of precursor cells during granulopoiesis. Leukemia 16, 1763–1772.

    Article  PubMed  CAS  Google Scholar 

  • Wells, A.D. (2003) Cell-cycle regulation of T cell responses—novel approaches to the control of alloimmunity. Immunol. Rev. 196, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Wiers, K., Lathers, D., Wright, M. and Young, M. (2000) Vitamin D3 treatment to diminish the levels of immune suppressive CD34+ cells increases the effectiveness of adoptive immunotherapy. J. Immunother. 23, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G. and Morris, S.M. (1998) Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17.

    PubMed  CAS  Google Scholar 

  • Yang, L., DeBusk, L., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., Matrisian, L., Carbone, D. and Lin, P. (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421.

    Article  PubMed  CAS  Google Scholar 

  • Young, M. (2004) Tumor skewing of CD34+ progenitor cell differentiation into endothelial cells. Int. J. Cancer 109, 516–524.

    Article  PubMed  CAS  Google Scholar 

  • Young, M., Ihm, J., Lozano, Y., Wright, M. and Prechel, M. (1995) Treating tumor-bearing mice with vitamin D3 diminishes tumor-induced myelopoiesis and associated immunosuppression, and reduces tumor metastasis and recurrence. Cancer Immunol. Immunother. 41, 37–45.

    PubMed  CAS  Google Scholar 

  • Young, M.R. and Lathers, D.M. (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int. J. Immunopharmacol. 21, 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Young, M.R.I., Wright, M.A., Matthews, J.P., Malik, I. and Pandit, R. (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-β gnd nitric oxide. J. Immunol. 156, 1916–1921.

    PubMed  CAS  Google Scholar 

  • Zea, A.H., Rodriguez, P.C., Atkins, M.B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’Neill, A., Mier, J. and Ochoa, A.C. (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044–3048.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Gabrilovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nagaraj, S., Gabrilovich, D.I. (2007). Myeloid-Derived Suppressor Cells. In: Shurin, M.R., Smolkin, Y.S. (eds) Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, vol 601. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72005-0_22

Download citation

Publish with us

Policies and ethics