Skip to main content

Sensing Infrared and Terahertz Regions by Functional Films

  • Chapter
  • First Online:
Functional Thin Films and Nanostructures for Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 994 Accesses

Abstract

Designing functional films and nanostructures has a key role in the performance of the infrared (IR) sensing and terahertz (THz) sensing that are based particularly on quantum well, wire, and dot structures. Sensing the electromagnetic (EM) spectra is an extremely important issue for various fields, from understanding the universe, living cells, and elementary particles to numerous applications. To give a glimpse of the field in connection to functional films and nanostructures as sensing elements, in this chapter we briefly discuss infrared (IR) sensing and terahertz (THz) sensing. For IR sensing we limit ourselves to low-dimensional semiconductor functional films. For THz sensing we discuss: (a) how strain in thin films influences THz absorption from impurities, (b) plasma effects in two-dimensional electron gas (2DEG), and (c) ultrasensitive bolometers based on metal films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agulo I, Kuzmin L, (2004) Nanotechnology, 15:224–228

    Google Scholar 

  • Allen SJ, Tsui DC, Logan RA (1977) Phys. Rev. Lett., 38:980–983

    CAS  Google Scholar 

  • Altukhov IV, Chirikova EG, Kagan MS, Korolev KA, Sinis VP, Smirnov FA (1992) Sov. Phys. JETP, 74:404

    Google Scholar 

  • Andronov AA (1987) Sov. Phys. Semiconduct., 21:701

    Google Scholar 

  • Bannov NA, Ryzhii VI (1983) Sov. Phys. Semicond., 17:439–441

    Google Scholar 

  • Berryman KW, Lyon SA, Segev M (1997) Appl. Phys. Lett., 70:1861–1863

    CAS  Google Scholar 

  • Bhattacharya P, Stiff-Roberts AD, Krishna S, Kennerly S (2002) Proc. SPIE, 4646:100–106

    CAS  Google Scholar 

  • Boucaud P, Brunhes T, Sauvage S, Yam N, Thanh V Le, Boucier D, Rappaport N (2001) Phys. Stat. Sol. (a), 224:233–235

    CAS  Google Scholar 

  • Brazis R (1995) Lithuanian Phys. J., 35:447

    Google Scholar 

  • Breakthrough of the Year: Illuminating the Dark Universe (2003) Science, 302, 2038.

    Google Scholar 

  • Chaplik AV (1972) Sov. Phys. JETP, 35:395–398

    Google Scholar 

  • Cheremisin MV, Samsonidze GG (1999) Semiconductors, 33:578–582

    CAS  Google Scholar 

  • Choi KK (1997) The Physics of Quantum Well Infrared Photodetectors. Singapore: World Scientific

    Google Scholar 

  • Crowne J (1997) J. Appl. Phys., 82:1242–1254

    CAS  Google Scholar 

  • Deng Y, Knap W, Rumyantsev S, Gaska R, Khan A, Ryzhii V, Kaminska E, Piotrowska A, Lusakowski J, Shur MS (2002) 2002 IEEE Lester Eastman Conference on High Performance Devices, University of Delaware, Newark, pp. 135–142

    Google Scholar 

  • Duboz J-Y, Liu HC, Wasilewski ZR, Byloss M, Dudek R (2003) J. Appl. Phys., 93:1320–1322

    CAS  Google Scholar 

  • Dyakonov M, Shur M (1993) Phys. Rev. Lett., 71:2465–2468

    CAS  Google Scholar 

  • Dyakonov M, Shur M (1996) IEEE Trans. Electron. Dev., 43:380–387, 1640–1645

    CAS  Google Scholar 

  • Einevoll GT, Chang Y-C (1990) Phys. Rev. B, 41,1447

    CAS  Google Scholar 

  • Ekenstedt MJ, Andersson TG, Wang SM (1993) Phys. Rev. B, 48:5289

    CAS  Google Scholar 

  • Ershov M, Ryzhii V, Hamaguchi C (1995) Appl. Phys. Lett., 67:3147–3149

    CAS  Google Scholar 

  • Faist J, Capasso F, Sivco DL, Hutchinson AL, Cho AY (1994) Science, 264:553

    CAS  Google Scholar 

  • Fraizzoli S, Pasquarello A (1990) Phys. Rev. B, 42:5349

    CAS  Google Scholar 

  • Fraizzoli S, Pasquarello A (1991) Phys. Rev. B, 44:1118

    CAS  Google Scholar 

  • Fritz IJ (1987) Appl. Phys. Lett., 51:1080

    CAS  Google Scholar 

  • Govorov AO, Kovalev VM, Chaplik AV (1999) JEPT Lett., 70:488–490

    CAS  Google Scholar 

  • Govorov AO, Studenikin SA, Frank WR (1998) Phys. Rev. B, 58:1517–1532

    Google Scholar 

  • Grave I, Yariv A (1992) In: Intersubband Transitions in Quantum Wells (Rosencher E, Vinter B, Levine B eds.). New York: Plenum, p. 15

    Google Scholar 

  • Hanabe M, Otsuji T, Ishibashi T, Uno T, Ryzhii V (2005) Jpn. J. Appl. Phys., 44:3842–3847

    CAS  Google Scholar 

  • Helm M, Hilber W, Fromherz T, Peters FM, Alavi K, Psthar RN (1994). In: Quantum Well Intersubband Transition Physics and Devices (Liu HC, Levine BF, Andersson JY, eds.). Dordrecht: Kluwer, p. 291

    Google Scholar 

  • Holtz PO, Zhao QX (2005) In: Materials Science V77, Impurities Confined in Quantum Structures (Hull R, Parisi J, Osgood RM, Warlimont H, eds.). Springer.

    Google Scholar 

  • Horiguchi N, Futatsugi T, Nakata Y, Yokoyama N, Mankad T, Petroff PM (1999) Jpn. J. Appl. Phys., 38:2559–2561

    CAS  Google Scholar 

  • Hu BYK, Wilkins JW (1991) Phys. Rev. B, 43:14009–14029

    Google Scholar 

  • Kempa K, Bakshi P, Xie H (1993) Phys. Rev. B, 48:9158–9161

    CAS  Google Scholar 

  • Kersting R, Unterrainer K, Strasser G, Kauffmann HF, Gornik E (1997) Phys. Rev. Lett., 79:3038–3041

    CAS  Google Scholar 

  • Khmyrova I, Ryzhii V (2000) Jpn. J. Appl. Phys., 39:4727–4732

    CAS  Google Scholar 

  • Kim S, Mohseni H, Erdtmann M, Michel E, Jelen C, Razeghi M (1998) Appl. Phys. Lett., 73:963–965

    CAS  Google Scholar 

  • Kochman B, Stiff-Roberts D, Chakrabarti S, Phillips JD, Krishna S, Bhattacharya P (2003) IEEE J. Quant. Electron., 39:459–463

    CAS  Google Scholar 

  • Krasheninnikov MV, Chaplik AV (1981) Sov. Phys. Semicond., 15:19–22

    Google Scholar 

  • Kustov VL, Ryzhii VI, Sigov YUS (1980) Sov. Phys. JETP, 52:1207–1212

    Google Scholar 

  • Kuzmin L (2000) Proceedings of the 9th Symposium on Space THz Technology, Pasadena, pp. 99–103, March 1998; Phys. B: Condensed Matt., 284–288, 2129.

    Google Scholar 

  • Kuzmin L (2004) Proceedings of SPIE conference “Mm and Submm Detectors”, Glasgow, June 21–25, Vol. 5498, pp. 349–361.

    Google Scholar 

  • Kuzmin L, Golubev D (2002) Phys. C, 372–376:378–382

    Google Scholar 

  • Kuzmin L, Mauskopf P (2005) Superconducting Cold-Electron Bolometer with JFET Readout for Balloon-Borne Telescope OLIMPO, ISSTT-05, Gothenburg, May.

    Google Scholar 

  • Kuzmin L, Devyatov I, Golubev D (1998) Proceedings of SPIE, 3465:193–199

    Google Scholar 

  • Kuzmin L, Agulo I, (2004) Supercond. Sci. Technol., 17:400–405

    Google Scholar 

  • Lee A, Richards P, Nam S, Cabrera B, Irwin K (1996) Appl. Phys. Lett., 69:1801

    CAS  Google Scholar 

  • Lee S-W, Hirakawa K, Shimada Y (1999) Appl. Phys. Lett., 75:1428–1430

    CAS  Google Scholar 

  • Li L-X, Sun S, Chang Y-C (2003) Infrared Phys. Technol., 44:57–61

    CAS  Google Scholar 

  • Liu HC (1992) Appl. Phys. Lett., 60:1507–1509

    CAS  Google Scholar 

  • Liu HC, Gao M, McCaffrey J, Wasilewski ZR, Fafard S (2001) Appl. Phys. Lett., 78:79–81

    CAS  Google Scholar 

  • Liu HC, Gunapala SD, Schneider H (eds.) (2004) QWIP 2004: Proceedings of the International Workshop on Quantum Well Infrared Photodetectors, Elsevier, Amsterdam.

    Google Scholar 

  • Loehr JP, Chen YC, Biswas D, Bhattacharya PK, Singh J (1990) Proceedings of the 20th International Conference on the Physics of Semiconductors, World Scientific, Singapore, Vol. 2, p. 1404

    Google Scholar 

  • Lu J-Q, Shur MS (2001) Appl. Phys. Lett., 78:2587–2589

    CAS  Google Scholar 

  • Lu J-Q, Shur MS, Hesler JL, Sun L, Weikle R (1998) IEEE Electron. Dev. Lett., 19:373–374

    Google Scholar 

  • Luryi S (1985) IEEE Electron. Dev. Lett., 6:78–80

    Google Scholar 

  • Maimon S, Finkman E, Bahir G, Schacham SE, Garcia JM, Petroff PM (1998) Appl. Phys. Lett., 73:2003–2005

    CAS  Google Scholar 

  • Masi S, de Bernardis P, et al. (2006) In: Background Microwave Radiation and Intracluster Cosmology eds, Melchiorri F and Rephaeli Y (New IOS press publication)

    Google Scholar 

  • Masselink WT, Change Y-C, Morkoc H (1983) Phys. Rev. B, 28:7373

    CAS  Google Scholar 

  • Masselink WT, Change Y-C, Morkoc H (1985) Phys. Rev. B, 32:5190

    CAS  Google Scholar 

  • Matov OR, Meskov OF, Popov VV (1998) J. Exp. Theor. Phys., 86:538–544

    Google Scholar 

  • Matthews JW, Blakeslee AE (1974) J. Crystal Growth, 27:118

    CAS  Google Scholar 

  • Miesner C, Brunner K, Abstreiter G (2001) Phys. Stat. Sol. (a), 224:605–607

    CAS  Google Scholar 

  • Nakayama M (1974) J. Phys. Soc. Jpn., 36:393–398

    CAS  Google Scholar 

  • Odnoblyudov MA, Chistyakov VM, Yassievich IN, Kagan MS (1998) Phys. Stat. Sol. (b), 210:873

    CAS  Google Scholar 

  • Odnoblyudov MA, Yassievich IN, Kagan MS, Galperin YUM, Chao KA (1999) Phys. Rev. Lett., 83:644

    CAS  Google Scholar 

  • Pan D, Towe E, Kennerly S (1998) Appl. Phys. Lett., 73:1937–1939

    CAS  Google Scholar 

  • Pan D, Towe E, Kennerly S (1999) Appl. Phys. Lett., 75:2719–2721

    CAS  Google Scholar 

  • Pasquarello A, Andreani LC, Buczko R (1989) Phys. Rev. B, 40:5602

    CAS  Google Scholar 

  • People R, Bean JC (1985) Phys. Appl. Lett., 47:322

    CAS  Google Scholar 

  • Phillips J, Kamath K, Bhattacharya B (1998) Appl. Phys. Lett., 72:2020–2022

    CAS  Google Scholar 

  • Phillips J, Bhattacharya P, Kennerly SW, Beekman DW, Dutta M (1999) IEEE J. Quant. Electron., 35:936–940

    CAS  Google Scholar 

  • Raghavan S, Rotella P, Stinz A, Fuchs B, Krishna S, Morath C, Cardimona DA, Kennerly SW (2002) Appl. Phys. Lett., 81:1369–1371

    CAS  Google Scholar 

  • Rappaport N, Finkman E, Brunhes T, Boucaud P, Sauvage S, Yam N, Thanh V Le, Boucier D (2000) Appl. Phys. Lett., 77:3224–3226

    CAS  Google Scholar 

  • Rokhinson LP, Chen CJ, Tsui DC, Vawter GA, Choi KK (1999) Appl. Phys. Lett., 74:759–761

    CAS  Google Scholar 

  • Rosencher E, Vinter B, Luc F, Thibaudeau L, Bois P, Nagle J (1994) IEEE Trans. Quant. Electron., 30:2875–2882

    CAS  Google Scholar 

  • Rudin S, Samsonidze G (1998) Phys. Rev. B, 58:16369–16373

    CAS  Google Scholar 

  • Rudin S, Samsonidze G, Crowne F (1999) J. Appl. Phys., 86:2083–2088

    CAS  Google Scholar 

  • Ryzhii M, Ryzhii V (1999) Jpn. J. Appl. Phys., 38:5922–5927

    CAS  Google Scholar 

  • Ryzhii M, Ryzhii V, Willander M (1999) Jpn. J. Appl. Phys., 38:6650–6653

    CAS  Google Scholar 

  • Ryzhii V (1996) Semicond. Sci. Technol., 11:759–765

    Google Scholar 

  • Ryzhii V (1997) Appl. Phys. Lett., 70:2532–2534 and J. Appl. Phys., 81:6442–6448

    CAS  Google Scholar 

  • Ryzhii V (1998) Jpn. J. Appl. Phys., 37:5937–5944

    CAS  Google Scholar 

  • Ryzhii V (2001) Jpn. J. Appl. Phys., 40:L148–L150 and Appl. Phys. Lett., 78:3346–3348

    CAS  Google Scholar 

  • Ryzhii V (ed.) (2003) Intersubband Infrared Photodetectors. Singapore: World Scientific.

    Google Scholar 

  • Ryzhii V, Ershov M (1995) Semicond. Sci. Technol., 10:687–690

    CAS  Google Scholar 

  • Ryzhii VI, Fedirko VA (1983) Sov. Phys. Semicond. 17:850–851

    Google Scholar 

  • Ryzhii V, Liu HC (1999) Jpn. J. Appl. Phys., 38:5815–5822

    CAS  Google Scholar 

  • Ryzhii VI, Bannov NA, Fedirko VA (1984) Sov. Phys. Semicond., 18:481–493

    Google Scholar 

  • Ryzhii V, Khmyrova I, Ryzhii M, Ershov M (1996) J. Phys. IV, 6:C3-157–159

    Google Scholar 

  • Ryzhii V, Khmyrova I, Shur M (2000a) J. Appl. Phys., 88:2868–2871

    CAS  Google Scholar 

  • Ryzhii V, Khmyrova I, Mitin V, Stroscio M, Willander M (2001a) Appl. Phys. Lett., 78:3523–3525

    CAS  Google Scholar 

  • Ryzhii V, Khmyrova I, Pipa V, Mitin V, Willander M (2001b) Semicond. Sci. Technol., 16:331–338

    CAS  Google Scholar 

  • Ryzhii V, Khmyrova I, Ryzhii M, Mitin V (2004a) Semicond. Sci Technol., 19:8–16

    CAS  Google Scholar 

  • Ryzhii V, Khmyrova I, Ryzhii M, Pipa V, Mitin V, Willander M (2001c ) Proc. SPIE, 4288:396–406

    CAS  Google Scholar 

  • Ryzhii V, Khmyrova I, Shur M (2002a) J. Appl. Phys., 91:1875–1881

    CAS  Google Scholar 

  • Ryzhii V, Pipa V, Khmyrova I, Mitin V, Willander M (2000b) Jpn. J. Appl. Phys., 39:L1283–L1285

    CAS  Google Scholar 

  • Ryzhii V, Ryzhii M, Liu HC (2002b) J. Appl. Phys., 92:207–213

    CAS  Google Scholar 

  • Ryzhii V, Satou A, Shur MS (2003) J. Appl. Phys., 93:10041–10045

    CAS  Google Scholar 

  • Ryzhii V, Satou A, Shur MS (2005) Phys. Stat. Sol. (a), 202:R113–R115

    CAS  Google Scholar 

  • Ryzhii V, Satou V, Khmyrova I, Chaplik A, Shur MS (2004b) J. Appl. Phys., 96:7625

    CAS  Google Scholar 

  • Sa'ar A, Mermelstein C, Schneider H, Schoenbein C, Walther M (1998) IEEE Photon. Technol. Lett., 10:1470–1472

    Google Scholar 

  • Satou A, Khmyrova I, Ryzhii V, Shur MS (2003) Semicond. Sci. Technol., 18:460–469

    CAS  Google Scholar 

  • Satou A, Ryzhii V, Chaplik A (2005a) J. Appl. Phys., 98:034502 1–5

    Google Scholar 

  • Satou A, Vyurkov V, Khmyrova I (2004) Jpn. J. Appl. Phys., 43:L566–L568

    CAS  Google Scholar 

  • Satou A, Khmyrova I, Chaplik A, Ryzhii V, Shur MS (2005b) Jpn. J. Appl. Phys., 44:2592–2596

    CAS  Google Scholar 

  • Sergeev A, Mitin V, Stroscio M (2002) Phys. B, 316–317:369–371

    Google Scholar 

  • Shur MS (1990) Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-Hall

    Google Scholar 

  • Shur MS, Ryzhii V (2003) Int. J. High Speed Electron. Syst., 13:575–600

    Google Scholar 

  • Sirmain G, Reichertz LA, Dubon OD, Haller EE, Hansen WL, Brundermann E, Linhart AM, Roser HP (1997) Appl. Phys. Lett., 70:1659

    CAS  Google Scholar 

  • Stern F (1967) Phys. Rev. Lett., 18:546–548

    CAS  Google Scholar 

  • Tang S-F, Lin S-Y, Lee S-C (2002) IEEE Trans. Electron. Dev., 49:1341–1346

    CAS  Google Scholar 

  • Teppe F, Veksler D, Kacharovskii VYU, Dmitriev AP, Rumyantsev S, Knap W, Shur MS (2005) Appl. Phys. Lett., 87:022102–022104

    Google Scholar 

  • Towe E, Pan D (2000) IEEE J. Sel. Top. Quant. Electron., 6:408–413

    CAS  Google Scholar 

  • Tsao JY, Dodson BW, Picraux ST, Cornelison DM (1987) Phys. Rev. Lett., 59:2455

    CAS  Google Scholar 

  • Vasanelli A, De Giorgi M, Ferreira R, Cingolani R, Bastard G (2001) Phys. E, 11:41–43

    CAS  Google Scholar 

  • Wang SM, Andersson TG, Vladimir KD, Yao JY (1991) Superlattice Microstruct., 9:123

    CAS  Google Scholar 

  • Xu SJ, Chua SJ, Mei T, Wang XC, Zhang XH, Karunasiri G, Fan WJ, Wang CH, Jiang J, Wang S, Xie XG (1998) Appl. Phys. Lett., 73:3153–3155

    CAS  Google Scholar 

  • Yakimov AI, Dvurechenskii AV, Proskuryakov YYU, Nikiforov AI, Pchelyakov OP, Teys SA, Gutakovskii AK (1999) Appl. Phys. Lett., 75:1413–1415

    CAS  Google Scholar 

  • Ye Z, Campbell JC, Chen Z, Kim E-T, Madhukar A (2002) IEEE J. Quant. Electron., 38:1234–1239

    CAS  Google Scholar 

  • Zhao QX, Willander M (1998) Phys. Rev. B, 57:13033

    CAS  Google Scholar 

  • Zhao QX, Willander M (1999) J. Appl. Phys., 86:5624

    CAS  Google Scholar 

  • Zhao QX, Willander M (2000) Phys. Lett. A, 270:273

    CAS  Google Scholar 

  • Zhao QX, Holtz PO, Pasquarello A, Monemar B, Willander M (1994a) Phys. Rev. B, 50:2393

    CAS  Google Scholar 

  • Zhao QX, Karlsteen M, Willander M, Wang SM, Sadeghi M (2000) Phys. Rev. B, 62:5055

    CAS  Google Scholar 

  • Zhao QX, Pasquarello A, Holtz PO, Monemar B, Willander M (1994b) Phys. Rev. B, 50:10953

    CAS  Google Scholar 

  • Zhao QX, Wongmanerod S, Willander M, Holtz PO, Wang SM, Sadeghi M (2001) Phys. Rev. B, 19:5317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Willander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willander, M., Ryzhii, V., Zhao, Q. (2009). Sensing Infrared and Terahertz Regions by Functional Films. In: Zribi, A., Fortin, J. (eds) Functional Thin Films and Nanostructures for Sensors. Integrated Analytical Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68609-7_8

Download citation

Publish with us

Policies and ethics