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Worst Imperfection for Stable Bifurcation

13.1 Introduction

The procedures to determine the worst mode of imperfection presented in Chap-
ters 11 and 12 are pertinent design methodologies for structures undergoing
unstable bifurcation such as cylindrical shells and stiffened plates. However, these
methodologies malfunction for a stable-symmetric bifurcation point, because this
point on the fundamental path disappears in the presence of a major imperfection.

Let us observe the equilibrium paths for major and minor imperfections illus-
trated in Fig. 13.1. For a major imperfection, Λ increases above the bifurcation
load factor Λc of the perfect system (cf., Fig. 13.1(a)). For a minor imperfection,
an imperfect system retains a bifurcation point, and the bifurcation load factor
may increase or decrease depending on the sign of the imperfection parameter
(cf., Fig. 13.1(b)).

A question arises whether it is safe to allow loads above the bifurcation load Λc.
From a sole standpoint of stability, it seems possible to allow the loading along
the bifurcation path exceeding the bifurcation load [246], and to determine the
maximum load factor by constraints on displacements and/or stresses. For exam-
ple, optimal design that has a stable-symmetric bifurcation point can be found
by constraining the fourth-order differential coefficient V,1111 to be nonnegative
(V,1111 ≥ 0) [31, 32, 97, 246].

Although a critical point does not exist for a structure with a major im-
perfection, the structure may undergo sudden dynamic large antisymmetric
deformation near the stable bifurcation point as the load factor is further in-
creased. The occurrence of such sudden deformation becomes abrupt if the major
imperfection is extremely small.
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Fig. 13.1 Equilibrium paths of perfect and imperfect systems. ◦: bifurcation
point; Q1: generalized displacement in the direction of bifurcation
mode; solid curve: perfect equilibrium path; dashed curve: imperfect
equilibrium path.

In this chapter, a simple and numerically efficient procedure is presented for
determining the maximum load factor of an imperfect elastic structure under-
going stable bifurcation for minor imperfections of nodal locations. We consider
a flexible structure allowing moderately large deformation. An anti-optimization
problem is formulated so as to minimize the bifurcation load factor within the con-
vex bounds on imperfection parameters. The method called simultaneous analysis
and design (SAND) [104, 315] is used, for which imperfections of nodal loads are
introduced, and the displacements are also considered as independent variables
to avoid costly nonlinear path-tracing analysis. It is shown for a plane column-
type truss that the worst mode of imperfection, which turns out to be a minor
imperfection, can be successfully obtained by the present approach.

This chapter is organized as follows. A procedure for determining the maxi-
mum load factor is introduced in Section 13.2. An anti-optimization problem is
formulated in Section 13.3. The worst imperfections of column-type trusses are
studied in Section 13.4.

13.2 Maximum Load Factor for Stable Bifurcation

The maximum load factor of a structure exhibiting stable bifurcation may be
defined by either bifurcation load factor Λc, or the load factor ΛM to be defined
in accordance with the specified bounds on stresses and/or displacements.

The worst imperfection to be obtained changes according to whether Λc or ΛM

is employed. First, if the bifurcation load factor Λc is used, the worst imperfection
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should be a minor imperfection because the bifurcation point exists for a minor
imperfection but disappears for a major imperfection.

Next we use the maximum load factor ΛM that is defined by the upper-bound
constraint Q1 ≤ QU

1 of the generalized displacement Q1 in the direction of the
bifurcation mode. As illustrated in Fig. 13.1, the reduction of ΛM due to a major
imperfection is very large for a relatively strict constraint QU

1 = Qa, but becomes
smaller as QU

1 is relaxed to, e.g., QU
1 = Qb.

For a minor imperfection, as can be observed from Fig. 13.1(b), the amount
of reduction is not sensitive to QU

1 , and the sensitivity of the maximum load to
a minor imperfection is almost equivalent to that of the bifurcation load. The
reduction is larger than that for a major imperfection if QU

1 is moderately large,
e.g., QU

1 = Qb. Therefore, the worst mode of imperfection for ΛM corresponds
to the major imperfection for small QU

1 , and to the minor imperfection for large
QU

1 .
Thus, for a flexible structure allowing moderately large deformation, a minor

imperfection plays a key role in defining both load factors Λc and ΛM, and the
maximum load defined by deformation constraints may be dramatically reduced
by minor imperfections rather than by major imperfections. For this reason, we
consider worst minor imperfections of the bifurcation load in the remainder of
this chapter.

13.3 Anti-Optimization Problem

An anti-optimization problem for minimizing the bifurcation load factor Λc

against a minor imperfection is formulated.
Consider an imperfection pattern vector d ∈ R

ν for, e.g., nodal locations and
cross-sectional areas. The norm of d is denoted by ‖d‖2H = d�Hd for a positive-
definite weight matrix H, and ‖d‖2H is a convex function of d.

13.3.1 Direct formulation

Specify an upper bound ‖d‖2H for ‖d‖2H . Decompose the imperfection mode d
into major imperfection d+ and minor imperfection d−. The maximum load
of an imperfect system considering reduction by the worst mode of a minor
imperfection is defined as the solution of the following anti-optimization problem:

AP1: minimize Λc(d−) (13.1a)

subject to ‖d−‖2H ≤ ‖d−‖2H (13.1b)

Problem AP1 may be solved by using an appropriate gradient-based optimiza-
tion algorithm if sensitivity coefficients of Λc can be computed. However, AP1 is
computationally expensive, because Λc for a given d− should be determined by
path-tracing analysis at each iterative step of optimization.
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Fig. 13.2 Feasible region for the eigenvalue constraint λ1 ≤ 0. Solid curve: stable;
dashed curve: unstable; ◦: stable bifurcation point.

13.3.2 Numerically efficient formulation

A numerically efficient formulation to find Λc as the minimum value of Λ under
constraint λ1 ≤ 0 is presented.

If we fix d− and only consider a major imperfection d+, the feasible region
in the (Q1,Λ)-space satisfying λ1 ≤ 0 lies above the curve ABC in Fig. 13.2.
For stable bifurcation under consideration, the feasible region in the vicinity of
the bifurcation point is convex in the (Q1,Λ)-space. Hence, the bifurcation load
of the imperfect system for a minor imperfection is found by the two steps of
minimization:

Step 1: Minimize Λ with respect to d+ under constraint of λ1 ≤ 0 to find the
bifurcation load Λc.

Step 2: Minimize Λ = Λc with respect to d− to obtain the worst imperfection.

Since both steps correspond to minimization of Λ, they can be carried out by
considering major and minor imperfections simultaneously as variables.

The method called simultaneous analysis and design, which is abbreviated as
SAND, is very efficient for reducing the required number of path-tracing analyses
that are to be carried out at each step of optimization or anti-optimization of
geometrically nonlinear structures. The state variable vector U, as well as the
design variables, are considered as independent variables [104, 315].

To utilize SAND, we consider the nodal displacement vector U as independent
variables in addition to d. In the conventional formulation of SAND, U is modified
to satisfy the equilibrium equations, or to minimize the total potential energy.
In order to make it easier to solve the optimization problem, AP1 in (13.1a)
and (13.1b) is relaxed by permitting imperfections in nodal loads, because in our
problem for obtaining the worst imperfection it is not very important to employ
exactly perfect nodal loads. The ranges of the nodal loads Λpi are given as

ΛpL
i ≤ Λpi ≤ ΛpU

i , (i = 1, . . . , n) (13.2)
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where pL
i and pU

i are the specified lower and upper bounds, respectively, and n
is the number of degrees of freedom.

Suppose the case where the errors in the loads are bounded by ±ΛΔp, and
rewrite (13.2) into

Λ(p0
i −Δp) ≤ Λpi ≤ Λ(p0

i + Δp), (i = 1, . . . , n) (13.3)

where p0
i is the perfect value of pi.

The equivalent nodal load Ri(U,d) (i = 1, . . . , n) in the direction of Ui of
an imperfect system is then calculated for current values of U and d during
anti-optimization. Recall that Ri is the derivative of the strain energy for the
proportional loading (cf., (1.11) with Ri = H,i in Section 1.2).

The anti-optimization problem for finding the minimum Λmin of Λ under con-
straints on the norms of imperfections and the sign of the lowest eigenvalue
λ1(U,d) of the tangent stiffness matrix is formulated as

AP2: minimize Λ (13.4a)

subject to ‖d‖2H ≤ ‖d‖2H (13.4b)

Λ(p0
i −Δp) ≤ Ri(U,d) ≤ Λ(p0

i + Δp), (i = 1, . . . , n)
(13.4c)

λ1(U,d) ≤ 0 (13.4d)

UL
i ≤ Ui ≤ UU

i , (i = 1, . . . , n) (13.4e)

The variables of this problem are U,d and Λ, and the upper- and lower-bound
constraints (13.4e) are assigned for U to improve convergence. Only Ri(U,d)
(i = 1, . . . , n) and λ1(U,d) are to be computed for the current values of U and
d at each iterative step of optimization without resort to costly path-tracing
analysis.

13.4 Worst Imperfection of Column-Type Trusses

Consider the plane column-type truss as shown in Fig. 13.3. The two springs
attached at nodes 7 and 8 have the same extensional stiffness K. We consider
two cases

• column-type truss with K = 0, and

• laterally supported truss with K �= 0.

The lengths of x- and y-directional members are 1000 mm and 2000 mm, respec-
tively. All the truss members have the same cross-sectional area of 200.0 mm2.
The proportional loads Λp in the negative y-direction are applied at nodes 7 and
8, where p = 98 kN. Young’s modulus is E = 205.8 kN/mm2. The axial strain is
defined by Green’s strain. The units of force kN and of length mm are suppressed
in the following.

Optimization problem AP2 is solved by IDESIGN Ver. 3.5 [14], in which the
SQP (cf., Section 4.3.2) is used, and the gradients of the objective and constraint
functions are computed by the finite difference approach.
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Fig. 13.3 Column-type plane truss.

The components of the imperfection pattern vector consist of the coordinates
of all the nodes except for the two supports. Therefore, the size of d is equal to
n (= 16). The weight matrix is given as H = (1/n2)In, where In ∈ R

n×n is the
identity matrix. The upper bound for the error in the nodal loads is Δp = 0.98.
The total number of variables d,U and Λ in AP2 is 33. The upper and lower
bounds, which are given as UL

i = −3000 and UU
i = 3000 for Ui, are inactive for

the following anti-optimal solutions.
Let Φ+ and Φ− denote the lowest antisymmetric and symmetric linear buckling

modes of the perfect system, respectively. Imperfection sensitivity is investigated
for the major imperfections in the directions of Φ+ and the minor ones in the
direction of Φ−, in comparison with the worst imperfection. Since the prebuckling
deformation is not very large for the perfect column-type trusses, the eigenmode
associated with the null eigenvalue of the tangent stiffness matrix at the critical
point can be approximated by a linear buckling mode.

13.4.1 Column-type truss

Consider the column-type truss (K = 0). The critical load factor of the perfect
system is Λc0 = 3.9366 at a stable-symmetric bifurcation point with a bifurcation
mode that is antisymmetric with respect to the y-axis.

We first investigate imperfection sensitivity of the maximum load factor in the
directions of Φ+ and Φ− shown in Figs. 13.4(a) and (b), respectively. Let Ux

denote the x-directional displacement of node 8, and Fig. 13.5 shows equilibrium
paths for the perfect and imperfect systems with major imperfections in the
direction of Φ+ with ‖d‖2H = 102 and 502. As is seen, Λ increases very slightly
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(a) Antisymmetric mode Φ+ (b) Symmetric mode Φ−

Fig. 13.4 Lowest symmetric and antisymmetric linear buckling modes of the
column-type truss.
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Fig. 13.5 Equilibrium paths for perfect and imperfect column-type trusses with
major imperfections in the direction of Φ+.

along the bifurcation path for the perfect system. Fig. 13.6 shows the paths for
minor imperfections corresponding to Φ− with ‖d‖2H = 102 and 502.

Define the maximum load factor ΛM by the displacement constraint Ux ≤ Ux.
It may be observed from Figs. 13.5 and 13.6 that the reduction of ΛM due to a
major imperfection is larger than that to a minor imperfection for small Ux, but
a minor imperfection is more influential than a major imperfection for sufficiently
large Ux. For instance, for ‖d‖2H = 502, the reduction for a minor imperfection
is larger than that for a major imperfection in the range Ux > 1790. It is to be
emphasized, for minor imperfections, that the amount of reduction of ΛM does
not strongly depend on the value of Ux. Therefore, the worst minor imperfection
mode for ΛM can be successfully obtained by solving AP2 that minimizes the
bifurcation load.



188 13 Worst Imperfection for Stable Bifurcation

Worst

Perfect

0

1

2

3

4

5

−500 0 500 1000 1500 2000 2500

Lo
ad

 fa
ct

or
 

Horizontal displacement      of node 8xU

Λ

2 2|| || 10H =d
2 2|| || 50H =d

Fig. 13.6 Equilibrium paths for perfect and imperfect column-type trusses with
minor imperfections in the direction of Φ−.

(a) Column-type truss (K = 0) (b) Laterally supported truss (K �= 0)

Fig. 13.7 Worst modes of imperfection.

The minimum of Λ of AP2 for ‖d‖2H ≤ ‖d‖2H = 502 is Λmin = 2.6693, which
is about 68% of Λc0 = 3.9366 of the perfect system. The worst mode of nodal
imperfection d⊥ is as shown in Fig. 13.7(a), which is symmetric with respect to
the y-axis and corresponds to a minor imperfection. The worst imperfections of
nodal locations and nodal loads are also listed in Table 13.1; all the components
of Δp = p−p0 are equal to the upper or lower bound. The equilibrium path for
the worst imperfection is plotted in Fig. 13.6 by the dotted-dashed line.

Note that Λc of the imperfect system corresponding to ‖d‖2H = 502 in the di-
rection of Φ− is 3.4747, which is much larger than that for the worst imperfection
d⊥. Therefore, Φ− cannot be used to approximate d⊥.
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Table 13.1 Worst imperfections of nodal locations and nodal loads.

Node Direction Location Load (Δpi/|p|)
1 x 137.81 0.01

y −2.2715 −0.01
2 x −137.83 −0.01

y −2.2766 −0.01
3 x 29.410 0.01

y 2.2275 −0.01
4 x −29.375 −0.01

y 2.2211 −0.01
5 x 6.8235 0.01

y 0.13910 −0.01
6 x −6.8769 −0.01

y 0.11772 −0.01
7 x −0.49643 0.01

y 9.1936 −0.01
8 x 0.49153 −0.01

y 9.1907 −0.01
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Fig. 13.8 Equilibrium paths for perfect and imperfect laterally supported trusses
with major imperfections in the direction of Φ+.

13.4.2 Laterally supported truss

Consider next a laterally supported truss with K = 0.1029. The ratio of the
extensional stiffness of the spring to that of the horizontal truss member is 0.005.
The critical load factor of the perfect system is Λc0 = 15.497.

Fig. 13.8 shows equilibrium paths for major imperfections corresponding to Φ+

with ‖d‖2H = 102 and 502. As is seen, the critical point of the perfect system is a
stable-symmetric bifurcation point, and the critical loads Λc of imperfect systems
are far above the bifurcation load. Note that, under displacement constraint of
a moderately large upper bound, the reduction of the maximum load ΛM of the
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Fig. 13.10 Equilibrium paths for perfect and imperfect laterally supported
trusses with minor imperfections in the direction of Φ−.

imperfect system from that of the perfect system is very small for ‖d‖2H = 102.
Variation of λ1 with respect to Λ for ‖d‖2H = 102 is as shown in Fig. 13.9. The
lowest eigenvalue has a local minimum at Λ � 14.5 near the bifurcation point of
the perfect system, but does not reach 0.

Fig. 13.10 shows equilibrium paths for minor imperfections in the direction of
Φ− with ‖d‖2H = 102 and 502. Note that the bifurcation load factor for ‖d‖2H =
502 is 14.107, where imperfections in nodal loads in the direction of Φ− are also
considered.

The load factor of the worst imperfection obtained by solving AP2 for ‖d‖2H ≤
‖d‖2H = 502 is Λmin = 12.483 which is about 81% of Λc = 15.497 of the perfect
system. The equilibrium path for the worst imperfection d⊥, which has reflection
symmetry as shown in Fig. 13.7(b), is also plotted in Fig. 13.10. In this case the
reduction of ΛM due to the worst imperfection is much larger than that to the



13.5 Summary 191

imperfection with the same norm in the direction of Φ−. Note from Fig. 13.7 that
d⊥ strongly depends on the presence of the extensional stiffness of the spring.

13.5 Summary

In this chapter,

• the maximum load factor for stable bifurcation based on displacement
constraint has been defined,

• an anti-optimization problem for minimizing the critical load factor has
been formulated, and

• the worst imperfection of a column-type plane truss has been studied.

The major findings of this chapter are as follows.

• The critical point of an imperfect system disappears if the perfect sys-
tem has a stable-symmetric bifurcation point. In this case, the maximum
load may be defined in reference to displacements and stresses of imperfect
systems with a specified norm of the worst imperfection.

• The worst minor imperfection can be successfully obtained as a solution of
an anti-optimization problem under a constraint on the lowest eigenvalue
of the tangent stiffness matrix. The problem is relaxed incorporating im-
perfections of nodal loads and is solved by employing nodal displacements
as independent variables without resort to costly path-tracing analysis at
each step of anti-optimization.

• For a flexible structure allowing moderately large displacements, the anti-
symmetric buckling mode is not always the worst mode of imperfection and
that a minor imperfection is very important for estimating the reduction
of the maximum load factor defined by displacement constraints.


