Skip to main content

This chapter reviews ophthalmic issues associated with spaceflight operations. Current vision standards for space flight, methods of vision correction for spaceflight crewmembers, and vision demographics are discussed, followed by clinical conditions that could affect spaceflight duties and common ocular emergencies that could occur during space operations. The current medical selection and retention standards ensure that space crewmembers are generally healthy, free of significant chronic disease, and are not taking medication on a long-term basis. This chapter focuses primarily on ocular abnormalities that might be expected in healthy subjects during exposure to microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NASA. Astronaut Medical Selection Manual. Houston, TX: NASA Johnson Space Center; June 1999. JSC 23086.

    Google Scholar 

  2. NASA. Astronaut Medical Evaluation Requirements Document, Revision A. Houston, TX: NASA Johnson Space Center; June 1998. JSC 24834.

    Google Scholar 

  3. NASA. Astronaut Medical Standards, Selection and Annual Medical Certification, Payload Specialist—Class III. Houston, TX: NASA Johnson Space Center; June 1997. JSC 25396.

    Google Scholar 

  4. Schanzlin DJ, Santos VR, Waring GO III, et al. Diurnal change in refraction, corneal curvature, visual acuity, and intraocular pressure after radial keratotomy in the PERK study. Ophthalmology 1986; 93:167-175.

    PubMed  CAS  Google Scholar 

  5. Snyder RP, Klein P, Solomon J. The possible effect of barometric pressure on the corneas of an RK patient: A case report. Intern Cont Lens Clinics 1988; 15:130-132.

    Google Scholar 

  6. White LJ, Mader TH. Refractive changes with increasing altitude after radial keratotomy. Am J Ophthalmol 1993; 115:821-823.

    PubMed  CAS  Google Scholar 

  7. Mader TH, White LJ. Refractive changes at extreme altitude after radial keratotomy. Am J Ophthalmol 1995; 119:733-737.

    PubMed  CAS  Google Scholar 

  8. Mader TH, Blanton CL, Gilbert BN, et al. Refractive changes during 72-hour exposure to high altitude after refractive surgery. Ophthalmology 1996; 103:1188-1195.

    PubMed  CAS  Google Scholar 

  9. Simsek S, Demirok A, Cinal A, Yasar T, Yilmaz O. The effect of altitude on radial keratotomy. Japan J Ophthalmol 1998; 42:119-123.

    Article  CAS  Google Scholar 

  10. Winkle RK, Mader TH, Parmley VC, et al. The etiology of refractive changes at high altitude following radial keratotomy: Hypoxia versus hypobaria. Ophthalmology 1998; 105:282-286.

    Article  PubMed  CAS  Google Scholar 

  11. Ng J, White LJ, Parmley VC, et al. Effects of simulated high alti-tude on patients who have had radial keratotomy. Ophthalmology 1996; 103:452-457.

    PubMed  CAS  Google Scholar 

  12. White LJ, Mader TH. Effects of hypoxia and high altitude fol-lowing refractive surgery. Ophthalmic Practice 1997; 15174-15178.

    Google Scholar 

  13. Maguire L. Keratorefractive surgery, success, and the public health. Am J Ophthalmol 1994; 117:394-398.

    PubMed  CAS  Google Scholar 

  14. Baron WS, Munnerlyn C. Predicting visual performance follow-ing excimer photorefractive keratectomy. J Refract Corneal Surg 1992; 8:355-362.

    CAS  Google Scholar 

  15. Maguire LJ, Zabel RW, Parker P, et al. Topography and raytrac-ing analysis of patients with excellent visual acuity 3 months after excimer laser photorefractive keratectomy for myopia. J Refract Corneal Surg 1991; 7:122-128.

    CAS  Google Scholar 

  16. Camp JJ, Maguire LJ, Cameron BM, et al. A computer model for the evaluation of the effect of corneal topography on optical performance. Am J Ophthalmol 1990; 109:379-386.

    PubMed  CAS  Google Scholar 

  17. Gartry DS, Kerr-Muir MG, Marshall J. Excimer laser photorefractive keratectomy. 18 month follow-up. Ophthalmology 1990; 99:1209.

    Google Scholar 

  18. Kim JH, Sah WJ, Kim MS, et al. Three year results of photore-fractive keratectomy for myopia. J Refract Surg 1995; 11:S248-S252.

    PubMed  CAS  Google Scholar 

  19. O’Brart DP, Lohmann CP, Fitzke FW, et al. Discrimination between the origins and functional implications of haze and halo at night after photorefractive keratectomy. J Refract Corneal Surg 1994; 10:S281.

    PubMed  Google Scholar 

  20. Schallhorn SC, Blanton CL, Kaupp SE, et al. Preliminary results of photorefractive keratectomy in active-duty United States Navy personnel. Ophthalmology 1996; 103:5-22.

    PubMed  CAS  Google Scholar 

  21. Heitzmann J, Binder PS, Kassar BS, Nordan LT. The correction of high myopia using the excimer laser. Ophthalmology 1993; 111:1627-1634.

    CAS  Google Scholar 

  22. Roberts CW, Koester CJ. Optical zone diameters for photorefrac-tive corneal surgery. Invest Ophthalmol Vis Sci 1993; 34:2275-2281.

    PubMed  CAS  Google Scholar 

  23. Snibson GR, Carson CA, Aldred GF, et al. One-year evaluation of excimer laser photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol 1995; 113:994-1000.

    PubMed  CAS  Google Scholar 

  24. Caubet E. Cause of subepithelial corneal haze over 18 months after keratectomy for myopia. J Refract Corneal Surg 1993; 9: S65-S70.

    CAS  Google Scholar 

  25. Orssaud C, Ganem S, Binaghi M, et al. Photorefractive kera-tectomy in 176 eyes: 1-year follow-up. J Refract Corneal Surg 1994; 10:S199-S205.

    PubMed  CAS  Google Scholar 

  26. Wilson SE, Klyce SD, McDonald MB, et al. Changes in corneal topography after excimer laser photorefractive keratectomy for myopia. Ophthalmology 1991; 98:1338-1347.

    PubMed  CAS  Google Scholar 

  27. Tengroth B, Epstein D, Fagerholm P, et al. Excimer laser pho-torefractive keratectomy for myopia. Ophthalmology 1993; 100:739-745.

    PubMed  CAS  Google Scholar 

  28. Maguen E, Salz JJ, Nesburn AB, et al. Results of excimer laser photorefractive keratectomy for the correction of myopia. Ophthalmology 1994; 101:1548-1557.

    PubMed  CAS  Google Scholar 

  29. Mader TH. Bilateral photorefractive keratectomy with inten-tional unilateral undercorrection performed on an aircraft pilot (guest editorial). J Cataract Refract Surg 1997; 23:145-147.

    PubMed  CAS  Google Scholar 

  30. Maldonado-Bas A, Onnis R. Results of laser in situ keratomi-leusis in different degrees of myopia. Ophthalmology 1998; 105:606-611.

    Article  PubMed  CAS  Google Scholar 

  31. El-Maghraby A, Salah T, Waring GO, et al. Randomized bilateral comparison of excimer laser in situ keratomileusis and photore-fractive keratectomy for 2.5-8 diopters of myopia. Ophthalmology 1999; 106:447-457.

    Article  PubMed  CAS  Google Scholar 

  32. Davidorf JM. LASIK at 16,000 feet (letter to the editor). Ophthalmology 1997; 104:565-566.

    PubMed  CAS  Google Scholar 

  33. Mader TH, Parmley VC, White LJ. Authors’ reply to LASIK at 16,000 feet (letter). Ophthalmology 1997; 104:566.

    Google Scholar 

  34. White LJ, Mader TH. Refractive changes at high altitude after LASIK (letter). Ophthalmology 2000; 107:2118.

    Article  PubMed  CAS  Google Scholar 

  35. Boes DA, Omura A, Hennessy MJ. The effective of high alti-tude exposure on myopic laser in situ keratomileusis. J Caratact Refract Surg 2001; 27:1937-1941.

    Article  CAS  Google Scholar 

  36. Dimmig JW, Tabin G. The ascent of Mount Everest following laser in situ keratomileusis. J Refract Surg 2003:19:48-51.

    PubMed  Google Scholar 

  37. Nelson ML, Brady S, Mader TH, et al. Refractive changes caused by hypoxia after laser in situ keratomileusis surgery. Ophthal-mology 2001; 108:542-544.

    Article  CAS  Google Scholar 

  38. Krueger RR, Burris TE. Intrastromal corneal ring technology. Int Ophthalmol Clin 1996; 36:89-106.

    Article  PubMed  CAS  Google Scholar 

  39. Mader TH, Carey WG, Friedl KE, et al. Intraocular lenses in aviators: A review of the US Army experience. Aviat Space Envi-ron Med 1987; 58:690-694.

    CAS  Google Scholar 

  40. Liddy BS, Boyd K, Takahashi GY. Cataracts, intraocular lens implants, and a flying career. Aviat Space Environ Med 1990; 61:660-661.

    PubMed  CAS  Google Scholar 

  41. Moorman DL, Green RP Jr. Cataract surgery and intraocu-lar lenses in military aviators. Aviat Space Environ Med 1992; 63:302-307.

    PubMed  CAS  Google Scholar 

  42. Loewenstein A, Geyer O, Biger Y, et al. Intraocular lens in a fighter aircraft pilot. Brit J Ophthalmol 1991; 75:752.

    Article  CAS  Google Scholar 

  43. Mader TH, Koch D, Manuel K, et al. Stability of vision in an astronaut with bilateral intraocular lenses during space flight. Am J Ophthalmol 1999; 127:342-343.

    Article  PubMed  CAS  Google Scholar 

  44. Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res 2001; 156:460-466.

    Article  PubMed  CAS  Google Scholar 

  45. Draeger J, Wirt H, Schwartz R. Tonometry under microgravity conditions. In: Sahm PR, Jansen R, Keller MH (eds.), Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission D-1. 27-29 August 1986; Norderney, Germany. Koln: Wissenschaftliche Projektfuhrung D1; 1987:503-509.

    Google Scholar 

  46. Draeger J, Wirt H, Schwartz R. TOMEX. Messung des Augenin-nendrucks unter micro-G Bedingungen [“TOMEX” monitoring of intraocular pressure under microG conditions]. Naturwissen-schaften 1986; 73:450-452.

    Article  CAS  Google Scholar 

  47. Mader TH, Gibson CR, Caputo M, et al. Intraocular pressure and retinal vascular changes during transient exposure to micrograv-ity. Am J Ophthal 1993; 115:347-350.

    PubMed  CAS  Google Scholar 

  48. Draeger J, Schwartz R, Groenhoff S, et al. Self-tonometry under microgravity conditions. Clin Investig 1993; 71:700-703.

    Article  PubMed  CAS  Google Scholar 

  49. Nicogossian AE, Parker JF, Jr. Space Physiology and Medicine. Washington, DC: US Government Printing Office; 1982:165-166. NASA SP-447.

    Google Scholar 

  50. Hoffler GW, Bergman SA, Nicogossian AE. In flight lower limb volume measurements. In: Nicogossian AE (ed.), The Apollo-Soyuz Test Project Medical Report. Washington, DC: US Gov-ernment Printing Office; 1977:63-68. NASA SP-411.

    Google Scholar 

  51. Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF (eds.), Biomedical Results from Skylab. Washington, DC: US Government Printing Office; l977:886-890. NASA SP-377.

    Google Scholar 

  52. Mader TH, Taylor G, Hunter N, et al. Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of ten-degree head-down tilt. Aviat Space Environ Med 1990; 61:810-813.

    PubMed  CAS  Google Scholar 

  53. Smith TJ, Lewis J. Effective inverted body position on intraocu-lar pressure. Am J Ophthalmol 1985; 99:618-619.

    Google Scholar 

  54. Mader TH. Intraocular pressure in microgravity. J Clin Pharma-col 1991; 31:947-950.

    CAS  Google Scholar 

  55. Moses RA, Hart WM (eds.), Adler’s Physiology of the Eye. St. Louis: C.V. Mosby; 1987:229-238.

    Google Scholar 

  56. Pattinson TJ, Gibson CR, Manuel FK, et al. The effects of betax-olol hydrochloride ophthalmic solution on intraocular pressures during transient microgravity. Aviat Space Environ Med 1999; 70:1012-1017.

    PubMed  CAS  Google Scholar 

  57. Draeger J, Michelson G, Rumberger E. Continuous assessment of intraocular pressure-telematic transmission, even under flight or space mission conditions. Eur J Med Res 2000; 5:2-4.

    PubMed  CAS  Google Scholar 

  58. Schein OD, Glynn RJ, Poggio EC, et al. The relative risk of ulcerative keratitis among users of daily wear and extended wear soft contact lenses. N Engl J Med 1989; 321:773-778.

    Article  PubMed  CAS  Google Scholar 

  59. Matthews TD, Frazer DG, Minassian DC, et al. The risks of keratitis and patterns of use with disposable contact lenses. Arch Ophthal 1992; 110:1559-1562.

    PubMed  CAS  Google Scholar 

  60. Buehler PO, Schein OD, Stamler JF, Verdier DD, Katz J. The increased risk of ulcerative keratitis among disposable soft con-tact lens users. Arch Ophthalmol 1992; 110:1555-1558.

    PubMed  CAS  Google Scholar 

  61. Hyndiuk RK, Eiferman RA, Caldwell DR, et al. Comparison of ciprofloxacin ophthalmic solution 0.3% to fortified tobramycin-cefazolin in treating bacterial corneal ulcers. Ophthalmology 1996; 103:1854-1862.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Manuel, F.K., Mader, T.H. (2008). Ophthalmologic Concerns. In: Barratt, M.R., Pool, S.L. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68164-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68164-1_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98842-9

  • Online ISBN: 978-0-387-68164-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics