Skip to main content

Copper–Tin Reactions in Bulk Samples

  • Chapter
Solder Joint Technology

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 117))

Abstract

Solder reaction is the wetting of a molten solder on a solid Cu surface. Typically, when a small drop of molten solder touches a large Cu surface, it spreads and forms a cap on the Cu surface. The cap has a stable wetting angle, which is defined usually by Young’s equation for a triple point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology,” Materials Science and Engineering Reports, R34, 1–58 (2001). (Review paper)

    Article  CAS  Google Scholar 

  2. K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electron packaging technology,” Materials Science and Engineering Reports, R38, 55–105 (2002). (Review paper)

    Article  CAS  Google Scholar 

  3. T. Young, Philos. Trans. R. Soc. London, 95, 65 (1805).

    Article  Google Scholar 

  4. H. K. Kim, H. K. Liou, and K. N. Tu, “Morphology of instability of wetting tips of eutectic SnBi, eutectic SnPb, and pure Sn on Cu,” J. Mater. Res., 10, 497–504 (1995).

    CAS  Google Scholar 

  5. H. K. Kim, H. K. Liou, and K. N. Tu, “Three-dimension morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu,” Appl. Phys. Lett., 66, 2337–2339 (1995).

    Article  CAS  Google Scholar 

  6. A. K. Larsson, L. Stenberg, and S. Liden, “Crystal structure modulation in η-Cu6Sn5,” Z. Kristallogr., 210 (11), 832–837 (1995).

    Article  CAS  Google Scholar 

  7. H. K. Kim and K. N. Tu, “Rate of consumption of Cu soldering accompanied by ripening,” Appl. Phys. Lett., 67, 2002–2004 (1995).

    Article  CAS  Google Scholar 

  8. C. Y. Liu and K. N. Tu, “Morphology of wetting reactions of SnPb alloys on Cu as a function of alloy composition,” J. Mater. Res., 13, 37–44 (1998).

    CAS  Google Scholar 

  9. C. Y. Liu and K. N. Tu, “Reactive flow of molten Pb(Sn) alloys in Si grooves coated with Cu film,” Phys. Rev. E, 58, 6308–6311 (1998).

    Article  CAS  Google Scholar 

  10. F. G. Yost and A. D. Romig, Jr., in “Electronic Packaging Materials Science III,” R. Jaccodine, K. A. Jackson, and R. C. Subdahl (Eds.), Materials Research Society Symp. Proc., 108, Pittsburgh, PA (1988).

    Google Scholar 

  11. W. J. Boettinger, C. A. Handwerker, and U. R. Kattner, “Reactive wetting and intermetallic formation,” in “The Mechanics of Solder Alloy Wetting and Spreading,” F. G. Yost, F. M. Hosking, and D. R. Frear (Eds.), Van Nostrand Reinhold, New York (1993).

    Google Scholar 

  12. J. Gorlich, G. Schmidt, and K. N. Tu, “On the mechanism of the binary Cu/Sn solder reaction,” Appl. Phys. Lett., 86, 053106–1 to –3 (2005).

    Article  CAS  Google Scholar 

  13. L. Kaufman and H. Bernstein, “Computer Calculation of Phase Diagram,” Academic Press, New York (1970).

    Google Scholar 

  14. J.-H. Shim, C.-S. Oh, B.-J. Lee, and D. N. Lee, “Thermodynamic assessment of the Cu-Sn system,” Z. Metallkd., 87, 205–212 (1996).

    CAS  Google Scholar 

  15. A. Bolcavage, C. R. Kao, S. L. Chen, and Y. A. Chang, “Thermodynamic calculation of phase stability between copper and lead-indium solder,” in Proc. Applications of Thermodynamics in the Synthesis and Processing of Materials, Oct. 2–6, 1994, Rosemont, IL, P. Nash and B. Sundman (Eds.), TMS, Warrendale, PA, pp. 171–185 (1995).

    Google Scholar 

  16. V. C. Marcotte and K. Schroeder, “Cu-Sn-Pb phase diagram,” in Proc. Thirteenth North American Thermal Analysis Society, A. R. McGhie (Ed.), North American Thermal Analysis Society, 1984, pp. 294.

    Google Scholar 

  17. H. Ohtani, K. Okuda, and K. Ishida, “Thermodynamic study of phase equilibria in the Pb-Sn-Sb system,” J. Phase Equil., 16, 416–429 (1995).

    Article  CAS  Google Scholar 

  18. K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Wetting reaction vs. solid state aging of eutectic SnPb on Cu,” J. Appl. Phys. 89, 4843–4849 (2001).

    Article  CAS  Google Scholar 

  19. K. N. Tu, F. Ku, and T. Y. Lee, “Morphological stability of solder reaction products in flip chip technology,” J. Electron. Mater., 30, 1129–1132 (2001).

    Article  CAS  Google Scholar 

  20. T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Morphology, kinetics, and thermodynamics of solid state aging of eutectic SnPb and Pb-free solders (SnAg, SnAgCu, and SnCu) on Cu,” J. Mater. Res., 17, 291–301 (2002).

    Article  CAS  Google Scholar 

  21. G. V. Kidson, “Some aspects of the growth of different layers in binary systems,” J. Nucl. Mater., 3, 21 (1961).

    Article  CAS  Google Scholar 

  22. U. Gosele and K.N. Tu, “Growth kinetics of planar binary diffusion couples: Thin film case versus bulk cases,” J. Appl. Phys., 53, 3252 (1982).

    Article  Google Scholar 

  23. H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening,” Phys. Rev. B, 53, 16027–16034 (1996).

    Article  CAS  Google Scholar 

  24. A. M. Gusak and K. N. Tu, “Kinetic theory of flux driven ripening,” Phys. Rev. B, 66, 115403 (2002).

    Article  CAS  Google Scholar 

  25. I. M. Lifshiz and V. V. Slezov, J. Phys. Chem. Solids, 19, 35 (1961).

    Article  Google Scholar 

  26. C. Wagner, Z. Electrochem., 65, 581 (1961).

    CAS  Google Scholar 

  27. V. V. Slezov, “Theory of Diffusion Decomposition of Solid Solutions,” Harwood Academic Publishers, pp. 99–112 (1995).

    Google Scholar 

  28. D. Turnbull, “Metastable structures in metallurgy,” Metall. Trans. A, 12, 695–708 (1981).

    Article  CAS  Google Scholar 

  29. S. Herd, K.N. Tu, and K.Y. Ahn, “Formation of an amorphous Rh-Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett., 42, 597 (1983).

    Article  CAS  Google Scholar 

  30. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tu, KN. (2007). Copper–Tin Reactions in Bulk Samples. In: Solder Joint Technology. Springer Series in Materials Science, vol 117. Springer, New York, NY. https://doi.org/10.1007/978-0-387-38892-2_2

Download citation

Publish with us

Policies and ethics