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Abstract 
Nobauer proofed in (Nobauer, 1954) that the power function x f--7 xk mod n is a permu
tation on Zn for a positive integer n iff n is squarefree and (k, .\(n)) = 1, where .\(n) 
denotes the Carmichael function and (a, b) the greatest common divisor of a and b. The 
RSA-cryptosystem uses this property for n = pq, where p, q are distinct primes. Hence 
the modul cannot be chosen arbitrarily. If we consider permutations on prime residue 
classes, there is no restriction for the module anymore. In order to find criteria for power 
permutations on Z~ we first deal with the fixed point problem. As a consequence we get 
the condition for k : 

r 

(k,[cfJ(p~', ... ,p~"])=1 for n=IJpf', 
i=l 

where q, denotes the Euler totient function and [a, b] the least common multiple of a and 
b. 
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1 INTRODUCTION 

In (Muller and Nobauer, 1983) a formula for fixed points of power permutations on Zn is 
proofed. If n = P1 · .. . ·pr is product of mutually distinct primes Pi and v = [Pl -1, ... , p, -1] 
with (k,v) = 1 then the number of fixed points fix(k,n) of the power permutations on 
Zn is 
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Table 1 
Arguments 

X 0 
xk mod n 0 

r 

fix(k,n) = fl(l + (k -1,p; -1)). 
i=l 

2 3 4 5 6 7 
0 3 0 5 0 7 

#fix with (1) 

5 3 

Dropping the restricting conditions which are necessary to get permutations gives rise 
to the question for a universally valid fixed point formula that is independent of the 
module and the exponent. There is a mistake in several publications, e.g. (Rosen, 1988), 
that give the universal fixed point formula as follows 

fix(k,n) = fl(l + (k -1,¢(pf;))), (1) 
i=l 

where n = p~1 • ••• • p~r. This formula already fails in the simple case, where n = 23 and 
k = 3 as shown in Table 1. 

In order to proof the general case we need some basic definitions and theorems. 

Definition 1 With z:;_. we denote the set of the units of Z,. z:;_. forms an abelian group 
under multiplication mod m. 

Lemma 1 If m = 2n and n = 1, 2 then z:;_. is cyclic. 

Lemma 2 If n 2: 3 and a E Z:in then ord2n (a) 12n-2 . 

Corollary 1 If n 2: 3 then the group Z:in is not cyclic. 

In general we have 

Theorem 1 (Gauss) z:;_. is cyclic iff m = 1, 2, 4, pe, 2pe, where p is an odd prime and e 
a positive integer. 

Theorem 2 If m = 2n and n 2: 3 then ordm ( 5) = ¢( m) /2 and 

is a prime residue system, where ±52n-
2 = ±1 mod m. 

Lemma 3 If(a,m) = 1, then a>-(m) = 1 mod m, where m is a positive integer. 
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2 THE NUMBER OF FIXED POINTS 

Definition 2 Let fix( k, n) denote the number of fixed points of x 1--+ xk over Zn, where 
k, n are positive integers. 

Lemma 4 If pr' · ... · p~r is the unique prime factorication of n then 

fix(k,n) = ITfix(k,pf'). 
i=l 

Theorem 3 Let p an odd prime and a a positive integer then 

f . (k "') { p"' fork= 1, 
~x ,p = 1 + (k- 1, rfJ(p"')) else. 

Proof. For k = 1 the proposition is obvious. For k > 1 we consider the equation 

xk = x mod p"' ~ x(xk-1 - 1) = 0 mod p"'. (2) 

Since for 1 :::; (3 < a : pf3lx =? p<>-{3 J xk-1 -1 and conversely, (2) is valid iff x = 0 mod p"' 
or xk-1 = 1 mod p"'. Since p =f 2 there exists as a consequence of theorem 1 a primitiv 
root w, hence {w,w2, ••. ,w¢(pa)} is a prime residue system. If x = wt then 

xk-1 = 1 mod p"' ~ wt(k-l) = 1 mod p"' 

~ t(k- 1) = 0 mod rjJ(p"'). (3) 

But now (3) has exactly (k- 1, r/J(p"')) incongruent solutions and therefore 

fix(k,p"') = 1 + (k- 1, r/J(p"')). D 

In order to get the complete fixed point formula we must consider the case p = 2 and 
a 2:: 1. We state 

Theorem 4 If n = 2"' and a is a positive integer then the numbe1· of fixed points is 

{
2"' fork=1, 

fix(k,n) = 1 + (k -1,¢(2"')) for a= 1,2 or 2lk, 
1 + 2(k- 1, .\(2"')) else. 

Proof. For a = 1, 2 and k = 1 the proposition is obvious. For a 2:: 3 and k =f 1 we study 
the equation 

xk = x mod 2" ~ x(xk-1 - 1) = 0 mod 2"' (4) 
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Analogous to the proof of theorem 3 we conclude, that ( 4) is valid iff 

x = 0 mod 2"' or xk-1 = 1 mod 2"'. (5) 

It is known that xk- 1 = 1 mod 2"' which implies 2\xk-1 - 1 and hence 21 x. Therefore 
(2"',x) = 1 and x E Z2a· 
By Lemma 3 and (5) it follows that 

ord(x)j>.(2"') = 2"'-2 and ord(x)jk -1 (6) 

If k = 2n then only or·d( x) = 1 satisfies the last condition and and hence x = 1 mod 2"'. 
From this we get for even k exactly the two fixed points 0, 1. 
If k = 2n + 1, where n is a positive integer. From (6) follows that there are only orders 
of the form 2v, where v = 0, 1, ... , a- 2. If v = 0 then x = 1 mod 2"' and hence we get 
only one solution. By using Theorem 2 let x E Z~a be of the form x = 5", where s = 21u 
and t = 0, 1, ... , n- 3 and u is odd. Let us consider now the order of x. We get 

ord(5") = ord(5) 
(s, ord(5)) 

Since ( -x)"' = 1 mod 2"' hence ord(-x)jord(x). Similarily we see ord(x)jord(-x) and 
so ord(x) = ord(-x). Therefore 

ord(5") = ord( -5") = 2n-t-2 , 

is independent of u in s = 21u. Since 

there are exactly 2n-t-3 possibilities to choose u and the same number for -5", alto
gether 2 · 2n-t-3 = 2n-t-2 • 

The order of -52n-z = -1 mod 2"', which we have not considered yet, is 2, and hence 
there are exactly 21 + 1 = 3 elements of the order ord(x) = 2. By (6) the order of x must 
always divide k - 1. If k - 1 = 2fu, where 21 u, we just have to derive those elements, 
whose order divides 2f. These are 

1 + (1 + 2 + ... + 2f) 
1 + 2f+l- 1 
2f+l 
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elements. 
If k - 1 = 0 mod 2"'-2 then k - 1 = 2"'-2 • l and we have 

By Lemma 3 this relation holds for all x E z:;a and these are exactly q)(2"') = 2"'-1 

elements. 
From the above results we see that the proposition of the theorem is valid. 0 

3 PERMUTATIONS ON ZJ.r 

Definition 3 Let L( k, n) the number of solutions of the equation xk = 1 mod n, where 
k, n are positive integers. 

Lemma 5 The map f : z~ -+ z~, with X f-+ xk mod n is injectiv iff L( k, n) = 1. 

Proof. Since f is a homomorphism, f is injecti v iff [( er(f) = { 1} and this holds iff 
L(k,n) = 1. 0 

As a consequence we get the following 

Theorem 5 The map f induces a permutation on Z~ iff L( k, n) = 1. 

In order to exclude trivial permutations on Z~, where n = 0~=1 pf', we have to choose 
k i= 1, such that 

r 

L(k,n) = 1 {==:;> IJ L(k,pf') = 1 
i:::::l 

{==:;> L(k,pf')=1, i=1, ... ,r. 

Since L(k,p"') = fix(k + 1,p"') -1 and by Theorem 3, 4 we have 

L( k, p"') = ( k, ( q)(p"')) 

for pi= 2 and 

L(k "') _ { (k, q)(p"')) for a= 1, 2 or 2f k, 
,p - 2(k, ,\(p"')) for 2lk. 

for p = 2. Therefore n = 2"'0 • pr• · ... · p~r has to satisfy 
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(k,¢J(2"0)) } rrr (k "'( "')) 1 
2(k,>.(2"o)) . i=l ''~'Pi = . 

For even k this condition can never hold and hence it can be reduced for odd k to 

(k, ¢J(2"0 )). II (k, qy(p';')) = 1 {==? (k, (¢J(2"0), qy(pr' ), ... , qy(p~r)]) = 1. 
i:::::l 

Now the demand for the squarefreeness of the Pi in the primfactorization of n can be 
dropped in the case of z~. 
Analogous to the condition for power permutations on Zn we state for Z~ 

Corollary 2 Let n = 2"0 • pr' · ... · p~r and k an odd positive integer. The map f is a 
permutation on z~ iff ( k' [¢J(2"0)' ¢(pr1)' ••• '¢(p~r)]) = 1. 

4 THE RSA-CRYPTOSYSTEM ON PRIME RESIDUE CLASSES 

The results of the last section motivate a public-key cryptosystem on prime residue classes. 
Analogous to the classical RSA-cryptosystem the enciphering and deciphering are defined 
by 

D M f-t Md mod n, ME Z~ 
E C f-+ ce mod n, 

where 

(d, (¢J(pr' ), ... , ¢(p~r)]) = 1 and d · e = 1 mod >.(n) 

with n = IJ~=l p';'. 
Since C = Md mod n we have 

ce = Md·e = M>.(n)·v · M = M mod n 

To guarantee cryptographical security the prime factors of the parameter n should be 
strong primes. For more information see (Rivest, Shamir and Adleman, 1978), (Berkovits, 
1982), (Gordon, 1984) and (Jamnig, 1984). We can make the system more practicable by 
choosing the message M from Zp, where p := milli{p;} instead of Z~. This means that 
each participant publishes the parameters n, d and the length of the blocks B < p. 
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Alternatively there is the possibility to fix the blocklength for the system, e.g. about 
onehundred digits. This forces each participant to determine each prime factor of n greater 
than onehundred digits. 
Futhermore you should note that the permutation, induced by x H xd mod n, has as few 
fixed points as possible. Because the knowledge of nontrivial fixed points could make it 
possible to factorize n, see (Williams and Schmid, 1979). Since the number of fixed points 
is determined by n and d, you can derive this number by 

fix(d, n) ~ fix( d, 2"') · P, fix(d,p~;) ~ { 

where n = 2"0 • n~=l p't. 
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