Skip to main content

Mechanical Properties of AAA Tissue

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 7))

Abstract

Aneurysms of the infrarenal abdominal aorta involve 100–800% growth of the aortic tissue. While the precise pathogenesis of AAA is poorly understood, it should be expected that this change to the structure of the aortic wall will significantly impact its mechanical behavior. It is only reasonable to postulate that a better understanding of the mechanical behavior of AAA tissue will aid in our understanding of its causes and assessing its severity. Even for developing ways to treat it—currently done with implants deployed surgically or endovascularly—understanding the mechanical properties of the AAA wall will enhance our ability to design implants that can stay in place and/or protect the aneurysm wall from blood pressure. This chapter will review the state of literature on the mechanical properties of AAA tissue, the challenges faced, recent advances and future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wolinsky, H., Glagov, S.: Structural Basis for the Static Mechanical Properties of the Aortic Media. Circ. Res. 14, 400–413 (1964)

    Google Scholar 

  2. Dingemans, K.P., et al.: Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258(1), 1–14 (2000)

    Article  Google Scholar 

  3. Baxter, B.T., et al.: Abdominal aortic aneurysms are associated with altered matrix proteins of the nonaneurysmal aortic segments. J. Vasc. Surg. 19(5), 797–802 (1994) (discussion 803)

    Google Scholar 

  4. van Laake, L.W., et al.: Systemic dilation diathesis in patients with abdominal aortic aneurysms: a role for matrix metalloproteinase-9?. Eur. J. Vasc. Endovasc. Surg. 29(4), 371–377 (2005)

    Google Scholar 

  5. Diehm, N., et al.: Aortic neck dilatation after endovascular abdominal aortic aneurysm repair: a word of caution. J. Vasc. Surg. 47(4), 886–892 (2008)

    Article  Google Scholar 

  6. Diehm, N., et al.: Severe structural damage of the seemingly non-diseased infrarenal aortic aneurysm neck. J. Vasc. Surg. 48(2), 425–434 (2008)

    Article  Google Scholar 

  7. Holmes, D.R., et al.: Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J. Vasc. Surg. 21(5), 761–371 (1995) (discussion 771–772)

    Google Scholar 

  8. Vorp, D.A.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40(9), 1887–1902 (2007)

    Article  Google Scholar 

  9. Vorp, D.A., Vande Geest, J.P.: Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol. 25(8), 1558–1566 (2005)

    Article  Google Scholar 

  10. Lanne, T., et al.: Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. Eur. J. Vasc. Surg. 6(2), 178–184 (1992)

    Article  Google Scholar 

  11. MacSweeney, S.T., et al.: Mechanical properties of the aneurysmal aorta. Br. J. Surg. 79(12), 1281–1284 (1992)

    Article  Google Scholar 

  12. Vorp, D.A., et al.: Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovasc. Surg. 4(6), 732–739 (1996)

    Article  Google Scholar 

  13. Wilson, K., et al.: The relationship between abdominal aortic aneurysm wall compliance, maximum diameter and growth rate. Cardiovasc. Surg. 7(2), 208–213 (1999)

    Article  Google Scholar 

  14. Long, A., et al.: Compliance of abdominal aortic aneurysms: evaluation of tissue Doppler imaging. Ultrasound Med. Biol. 30(9), 1099–1108 (2004)

    Article  Google Scholar 

  15. Long, A., et al.: Compliance of abdominal aortic aneurysms evaluated by tissue Doppler imaging: correlation with aneurysm size. J. Vasc. Surg. 42(1), 18–26 (2005)

    Article  Google Scholar 

  16. Ganten, M.K., et al.: Quantification of aortic distensibility in abdominal aortic aneurysm using ECG-gated multi-detector computed tomography. Eur. Radiol. 18(5), 966–973 (2008)

    Article  Google Scholar 

  17. Sumner, D.S., Hokanson, D.E., Strandness Jr., D.E.: Stress-strain characteristics and collagen-elastin content of abdominal aortic aneurysms. Surg. Gynecol. Obstet. 130(3), 459–466 (1970)

    Google Scholar 

  18. Drangova, M., et al.: Elasticity and geometry measurements of vascular specimens using a high-resolution laboratory CT scanner. Physiol. Meas. 14(3), 277–290 (1993)

    Article  Google Scholar 

  19. He, C.M., Roach, M.R.: The composition and mechanical properties of abdominal aortic aneurysms. J. Vasc. Surg. 20(1), 6–13 (1994)

    Article  Google Scholar 

  20. Raghavan, M.L., Webster M.W., Vorp, D.A.: Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24(5), 573–582 (1996)

    Google Scholar 

  21. Vorp, D.A., et al.: Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta. Ann. N. Y. Acad. Sci. 800, 274–276 (1996)

    Google Scholar 

  22. Roach, M.R., Burton, A.C.: The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35(8), 681–690 (1957)

    Article  Google Scholar 

  23. Sherebrin, M.H., Hegney, J.E., Roach, M.R.: Effects of age on the anisotropy of the descending human thoracic aorta determined by uniaxial tensile testing and digestion by NaOH under load. Can. J. Physiol. Pharmacol. 67(8), 871–878 (1989)

    Article  Google Scholar 

  24. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4), 475–482 (2000)

    Article  Google Scholar 

  25. Vallabhaneni, S.R., et al.: Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms. J. Endovasc. Ther. 11(4), 494–502 (2004)

    Article  Google Scholar 

  26. Thubrikar, M.J., et al.: Mechanical properties of abdominal aortic aneurysm wall. J. Med. Eng. Technol. 25(4), 133–142 (2001)

    Article  Google Scholar 

  27. Raghavan, M.L., et al.: Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39(16), 3010–3016 (2006)

    Article  Google Scholar 

  28. Fillinger, M.F., et al.: Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4), 724–732 (2003)

    Article  Google Scholar 

  29. Di Martino, E.S., et al.: Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43(3), 570–576 (2006) (discussion 576)

    Google Scholar 

  30. Raghavan, M.L., Hanaoka, M.M., Kratzberg, J.A., Higuchi, M.D., da Silva, E.S.: Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J. Biomech. (in press)

    Google Scholar 

  31. Raghavan, M.L., et al.: Failure properties of ruptured and unruptured abdominal aortic aneurysms. In: Proceedings of Summer Bioengineering Conference (SBC2009-204060). Lake Tahoe, CA, USA (2009)

    Google Scholar 

  32. Holzapfel, G.A.: Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238(2), 290–302 (2006)

    Article  MathSciNet  Google Scholar 

  33. Holzapfel, G.A., Sommer, G., Regitnig, P.: Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126(5), 657–665 (2004)

    Article  Google Scholar 

  34. Doyle, B.J., et al.: A finite element analysis rupture index (FEARI) as an additional tool for abdominal aortic aneurysm rupture prediction. Vasc. Dis. Prev. 6, 114–121 (2009)

    Article  Google Scholar 

  35. Vande Geest, J.P., et al.: Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34(7), 1098–1106 (2006)

    Article  Google Scholar 

  36. Vande Geest, J.P., et al.: A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 1085, 11–21 (2006)

    Article  Google Scholar 

  37. Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39(7), 1324–1334 (2006)

    Article  Google Scholar 

  38. Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61(1–3), 199–246 (2000)

    Article  MATH  Google Scholar 

  39. Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126(6), 815–822 (2004)

    Article  Google Scholar 

  40. Choi, H.S., Vito, R.P.: Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112(2), 153–159 (1990)

    Article  Google Scholar 

  41. Marra, S.P., Kennedy, F.E., Fillinger, M.F.: Mechanical properties characterization of abdominal aortic aneurysm tissue using biaxial testing. In: Proceedings of IMECE2002 ASME International Mechanical Engineering Congress & Exposition (IMECE2002-32779). New Orleans, LA (2002)

    Google Scholar 

  42. Marra, S.P., et al.: Elastic and rupture properties of porcine aortic tissue measured using inflation testing. Cardiovasc. Eng. 6(4), 123–131 (2006)

    Article  Google Scholar 

  43. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 48 (2006)

    MathSciNet  Google Scholar 

  44. Balocco, S., et al.: Feasibility of estimating regional mechanical properties of cerebral aneurysms in vivo. Med. Phys. 37(4), 1689–1706 (2010)

    Google Scholar 

  45. Zhao, X., Raghavan, M.L., Lu, J.: Identifying heterogeneous anisotropic properties in cerebral aneurysms: a pointwise approach. Biomech. Model. Mechanobiol. 7, 477–489 (2008)

    Google Scholar 

  46. Tierney, A.P., Callanan, A., McGloughlin, T.M.: In vivo feasibility case study for evaluating abdominal aortic aneurysm tissue properties and rupture potential using acoustic radiation force impulse imaging. J. Mech. Behav. Biomed. Mater. 4(3), 507–513 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhavan L. Raghavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raghavan, M.L., da Silva, E.S. (2011). Mechanical Properties of AAA Tissue. In: McGloughlin, T. (eds) Biomechanics and Mechanobiology of Aneurysms. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_71

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18094-1

  • Online ISBN: 978-3-642-18095-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics