Skip to main content

Aneurysm: Epidemiology Aetiology and Pathophysiology

  • Chapter
  • First Online:
Biomechanics and Mechanobiology of Aneurysms

Abstract

Abdominal aortic aneurysm (AAA) disease is a chronic degenerative disorder and is an important cause of preventable deaths in older patients. Prevalence rates are estimated between 1.3 and 8.9% in men and between 1.0 and 2.2% in women. However, with the aging of the population and the increasing number of smokers, the incidence of the AAA is rising. The prevalence and incidence of thoracic aortic aneurysms (TAA) is more difficult to assess than for the abdominal portion of the aorta due to poorer access to screening. The overall incidence rate of TAAs is estimated at 10.4 per 100,000 person-years. The classical risk factors for atherosclerosis, such as tobacco smoking, male sex, age, hypertension, and hyperlipidemia have all been found to be also risk factors for AAA. The pathophysiology of the aorta above and below the diaphragm has shown significant differences in biomechanical properties, atherosclerotic distribution, proteolytic pattern, and cell signaling pathways that have implications in the development of an aortic aneurysm. During the last decades an overwhelming amount of evidence has been accumulated in support of genetic risk factors contributing to the development, growth and rupture of aneurysms in different segments of the arterial tree. Inflammation and matrix metalloproteinases (MMPs) also play a key role in the pathogenesis of AAA by causing proteolytic degradation of structural proteins. The size of an aneurysm is a universally recognized factor in predicting the probability of rupture; the risk of rupture increases as the diameter of the aneurysm increases. Rupture occasionally occurs in small aneurysms. The risk of rupture and dissection of TAAs also increase with increasing diameter. In addition, not only the size but also the growth rate of the aneurysm has been consistently shown to be critical in predicting rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, S., Ogren, M., Bengtsson, H., et al.: Increasing incidence of ruptured abdominal aortic aneurysm: a population-based study. J. Vasc. Surg. 44(2), 237–243 (2006)

    Google Scholar 

  2. Achneck, H., Modi, B., Shaw, C., et al.: Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis. Chest 128(3), 1580–1586 (2005)

    Google Scholar 

  3. Ailawadi, G., Eliason, J.L., Roelofs, K.J., et al.: Gender differences in experimental aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 24(11), 2116–2122 (2004)

    Google Scholar 

  4. Alexander, J.J.: The pathobiology of aortic aneurysms. J. Surg. Res. 117(1), 163–175 (2004)

    Google Scholar 

  5. Allaire, E., Forough, R., Clows, M., et al.: Local overexpression of TIMP-1 prevent aortic aneurysm degeneration and rupture in a rat model. J. Clin. Invest. 102, 1413–1420 (1998)

    Google Scholar 

  6. Allaire, E., Hasenstab, D., Kenagy, R.D., et al.: Prevention of aneurysm development and rupture by local overexpression of plasminogen activator inhibitor-1. Circulation 98(3), 249–255 (1998)

    Google Scholar 

  7. Aneurysm Detection and Management Veterans Affairs Cooperative Study Group: Immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Engl. J. Med. 346, 1437–1444 (2002)

    Google Scholar 

  8. Anidjar, S., Salzman, L., Gentric, D., et al.: Elastase-induced experimental aneurysms in rats. Circulation 82, 973–981 (1990)

    Google Scholar 

  9. Ashton, H.A., Buxton, M.J., Day, N.E., et al.: The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial. Lancet 360(9345), 1531–1539 (2002)

    Google Scholar 

  10. Barker, D.J.: Fetal origins of coronary heart disease. BMJ 311(6998), 171–174 (1995)

    Google Scholar 

  11. Bengtsson, H., Sonesson, B., Bergqvist, D.: Incidence and prevalence of abdominal aortic aneurysms, estimated by necropsy studies and population screening by ultrasound. Ann. NY Acad. Sci. 18, 1–24 (1996)

    Google Scholar 

  12. Bickerstaff, L.K., Pairolero, P.C., Hollier, L.H., et al.: Thoracic aortic aneurysms: a population-based study. Surgery 92, 1103–1108 (1982)

    Google Scholar 

  13. Bilguvar, K., Yasuno, K., Niemela, M., et al.: Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat. Genet. 40, 1472–1477 (2008)

    Google Scholar 

  14. Blanchard, J.F., Armenian, H.K., Friesen, P.P.: Risk factors for abdominal aortic aneurysm: results of a case-control study. Am. J. Epidemiol. 151(6), 575–583 (2000)

    Google Scholar 

  15. Boddy, A.M., Lenk, G.M., Lillvis, J.H., et al.: Basic research studies to understand aneurysm disease. Drug News Perspect. 21, 142–148 (2008)

    Google Scholar 

  16. Borkett-Jones, H.J., Stewart, G., Chilvers, A.S.: Abdominal aortic aneurysms in identical twins. J. Royal Soc. Med. 81, 471–473 (1988)

    Google Scholar 

  17. Brown, L.C., Powell, J.T.: Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK small aneurysm trial participants. Ann. Surg. 230(3), 289–296 (1999). discussion 296–7

    Google Scholar 

  18. Brady, A.R., Thompson, S.G., Fowkes, F.G., et al.: Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110(1), 16–21 (2004)

    Google Scholar 

  19. Buckley, C., Wyble, C.W., Borhani, M., et al.: Accelerated enlargement of experimental abdominal aortic aneurysms in a mouse model of chronic cigarette smoke exposure. J. Am. Coll. Surg. 199(6), 896–903 (2004)

    Google Scholar 

  20. Cambria, R.A., Glovicki, P., Stanson, A.W., et al.: Outcome and expansion rate of 57 thoraco-abdominal aortic aneurysms managed nonoperatively. Am. J. Surg. 170(2), 213–217 (1995)

    Google Scholar 

  21. Campa, J.S., Greenhalgh, R.M., Powel, J.T.: Elastin degradation in abdominal aortic aneurysms. Atherosclerosis 65, 13–21 (1987)

    Google Scholar 

  22. Carmeliet, P., Moons, L., Lijnen, R., et al.: Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat. Genet. 17(4), 439–444 (1997)

    Google Scholar 

  23. Carrell, T.W., Burnand, K.G., Wells, G.M., et al.: Stromelysin-1 (matrix metalloproteinase-3) and tissue inhibitor of metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurysms. Circulation 105(4), 477–482 (2002)

    Google Scholar 

  24. Choke, E., Cockerill, G.W., Laing, K., et al.: Whole genome-expression profiling reveals a role for immune and inflammatory response in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 37, 305–310 (2009)

    Google Scholar 

  25. Clifton, M.A.: Familial abdominal aortic aneurysms. Br. J. Surg. 64(11), 765–766 (1977)

    Google Scholar 

  26. Clouse, W.D., Hallett Jr, J.W., Schaff, H.V., et al.: Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin. Proc. 79(2), 176–180 (2004)

    Google Scholar 

  27. Clouse, W.D., Hallett Jr, J.W., Schaff, H.V., et al.: Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA 280(22), 1926–1929 (1998)

    Google Scholar 

  28. Coady, M.A., Stockwell, P.H., Robich, M.P., et al.: Should aortas in patients with bicuspid aortic valve really be resected at an earlier stage than tricuspid? CON. Cardiol. Clin. 28(2), 299–314 (2010)

    Google Scholar 

  29. Cripe, L., Andelfinger, G., Martin, L.J., et al.: Bicuspid aortic valve is heritable. J. Am. Coll. Cardiol. 44(1), 138–143 (2004)

    Google Scholar 

  30. Curci, J.A., Thompson, R.W.: Adaptive cellular immunity in aortic aneurysms: cause, consequence, or context? J. Clin. Invest. 114(2), 168–171 (2004)

    Google Scholar 

  31. Curci, J.A., Liao, S., Huffman, M.D., et al.: Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J. Clin. Invest. 102(11), 1900–1910 (1998)

    Google Scholar 

  32. Davis, V., Persidskaia, R., Baca-Regen, L., et al.: Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 18(10), 1625–1633 (1998)

    Google Scholar 

  33. Defawe, O.D., Colige, A., Lambert, C.A., et al.: TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc. Res. 60(1), 205–213 (2003)

    Google Scholar 

  34. Defawe, O.D., Colige, A., Deroanne, C., et al.: Mechanical strain modulates monocyte chemotic protein-1 and IL-1beta mRNA expression by cultured human aortic smooth muscle cells. Presented at the XIIIth International Vascular Biology Meeting, June 1–5, Toronto (2004)

    Google Scholar 

  35. Defawe, O.D., Hustinx, R., Defraigne, J.O., et al.: Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin. Nucl. Med. 30(5), 340–341 (2005)

    Google Scholar 

  36. Deka, R., Koller, D.L., Lai, D., et al.: The relationship between smoking and replicated sequence variants on chromosome 8 and 9 with familial intracranial aneurysm. Stroke 41(6), 1132–1137 (2010)

    Google Scholar 

  37. Della Corte, A., Bancone, C., Quarto, C., et al.: Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression. Eur. J. Cardiothorac. Surg. 37, 397–405 (2007)

    Google Scholar 

  38. Deng, G.G., Martin-McNulty, B., Sukovich, D.A., et al.: Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm. Circ. Res. 92(5), 510–517 (2003)

    Google Scholar 

  39. Diehm, N., Baumgartner, I.: Determinants of aneurysmal aortic disease. Circulation 119(16), 2134–2135 (2009)

    Google Scholar 

  40. Dingemans, K.P., Teeling, P., Lagendijk, J.H., Becker, A.E.: Extracellular matrix of the human aortic media: an ultrastructural, histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258, 1–14 (2000)

    Google Scholar 

  41. Dobrin, P.B.: Animal models of aneurysms. Ann. Vasc. Surg. 13(6), 641–648 (1999)

    Google Scholar 

  42. Dubick, M.A., Keen, C.L., DiSilvestro, R.A., et al.: Antioxidant enzyme activity in human abdominal aortic aneurysmal and occlusive disease. Proc. Soc. Exp. Biol. Med. 220(1), 39–45 (1999)

    Google Scholar 

  43. El-Benna, J., Dang, P.M., Périanin, A.: Peptide-based inhibitors of the phagocyte NADPH oxidase. Biochem. Pharmacol. 80(6), 778–785 (2010)

    Google Scholar 

  44. Elefteriades, J.A., Farkas, E.A.: Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55, 841–857 (2010)

    Google Scholar 

  45. Elefteriades, J.A., Rizzo, J.A.: Epidemiology, prevalence, incidence, trends. In: Elefteriades, J.A. (ed.) Acute Aortic Disease, pp. 89–98. Informa Healthcare, New York, NY (2008)

    Google Scholar 

  46. Elmore, J.R., Obmann, M.A., Kuivaniemi, H., et al.: Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association. J. Vasc. Surg. 49, 1525–1531 (2009)

    Google Scholar 

  47. Elzouki, A.N., Ryden Ahlgren, A., Lanne, T., et al.: Is there a relationship between abdominal aortic aneurysms and alpha1-antitrypsin deficiency (PiZ)? Eur. J. Vasc. Endovasc. Surg. 17(2), 149–154 (1999)

    Google Scholar 

  48. Erentug, V., Bozbuga, N., Omeroglu, S.N., et al.: Rupture of abdominal aortic aneurysms in Behcet’s disease. Ann. Vasc. Surg. 17(6), 682–685 (2003)

    Google Scholar 

  49. Eriksson, P., Jones, K.G., Brown, L.C., et al.: Genetic approach to the role of cysteine proteases in the expansion of abdominal aortic aneurysms. Br. J. Surg. 91(1), 86–89 (2004)

    Google Scholar 

  50. Fedak, P.W., de Sa, M.P., Verma, S., et al.: Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J. Thorac. Cardiovasc. Surg. 126(3), 797–806 (2003)

    Google Scholar 

  51. Fontaine, V., Jacob, M.P., Houard, X., et al.: Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am. J. Pathol. 161(5), 1701–1710 (2002)

    Google Scholar 

  52. Fontaine, V., Touat, Z., Mtairag el, M., et al.: Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am. J. Pathol. 164(6), 2077–2087 (2004)

    Google Scholar 

  53. Forsdahl, S.H., Singh, K., Solberg, S., Jacobsen, B.K.: Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the Tromsø study, 1994–2001. Circulation 119(16), 2202–2208 (2009)

    Google Scholar 

  54. Foroud, T., Sauerbeck, L., Brown, R., et al.: FIA Study Investigators. Genome screen to detect linkage to intracranial aneurysm susceptibility genes: the Familial Intracranial Aneurysm (FIA) study. Stroke 39, 1434–1440 (2008)

    Google Scholar 

  55. Ghorpade, A., Baxter, B.T.: Biochemistry and molecular regulation of matrix macromolecules in abdominal aortic aneurysms. Ann. N. Y. Acad. Sci. 800, 138–150 (1996)

    Google Scholar 

  56. Gillum, R.F.: Epidemiology of aortic aneurysm in the United States. J. Clin. Epidemiol. 48(11), 1289–1298 (1995)

    Google Scholar 

  57. Giusti, B., Rossi, L., Lapini, I., et al.: Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 38, 104–112 (2009)

    Google Scholar 

  58. Glimaker, H., Holmberg, L., Elvin, A., et al.: Natural history of patients with abdominal aortic aneurysm. Eur. J. Vasc. Surg. 5(2), 125–130 (1991)

    Google Scholar 

  59. Griepp, R.B., Ergin, M.A., Galla, J.D., et al.: Natural history of descending thoracic and thoracoabdominal aneurysms. Ann. Thorac. Surg. 67(6), 1927–1930 (1999)

    Google Scholar 

  60. Guo, D.C., Pannu, H., Tran-Fadulu, V., et al.: Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat. Genet. 39, 1488–1493 (2007)

    Google Scholar 

  61. Hance, K.A., Tataria, M., Ziporin, S.J., et al.: Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and 67-kD cell surface elastin receptor. J. Vasc. Surg. 35(2), 254–261 (2002)

    Google Scholar 

  62. Hashikata, H., Liu, W., Inoue, K., et al.: Confirmation of an association of single-nucleotide polymorphism rs1333040 on 9p21 with familial and sporadic intracranial aneurysms in Japanese patients. Stroke 41(6), 1138–1144 (2010)

    Google Scholar 

  63. Helgadottir, A., Thorleifsson, G., Magnusson, K.P., et al.: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 40, 217–224 (2008)

    Google Scholar 

  64. Henderson, E.L., Geng, Y.J., Sukhova, G.K., et al.: Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 99(1), 96–104 (1999)

    Google Scholar 

  65. Herron, G.S., Unemori, E., Wong, M., et al.: Connective tissue proteinases and inhibitors in abdominal aortic aneurysms. Atheroscl. Thromb. 11, 1667–1677 (1991)

    Google Scholar 

  66. Holdt, L.M., Beutner, F., Scholz, M., et al.: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol. 30, 620–627 (2010)

    Google Scholar 

  67. Holmes, D.R., Liao, S., Parks, W.C., Thompson, R.W.: Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J. Vasc. Surg. 21(5), 761–771 (1995). discussion 771–772

    Google Scholar 

  68. Huntington, K., Hunter, A.G., Chan, K.L.: A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J. Am. Coll. Cardiol. 30(7), 1809–1812 (1997)

    Google Scholar 

  69. Isselbacher, E.M.: Thoracic and abdominal aortic aneurysms. Circulation 111(6), 816–828 (2005)

    Google Scholar 

  70. Ito, S., Akutsu, K., Tamori, Y., et al.: Differences in atherosclerotic profiles between patients with thoracic and abdominal aortic aneurysms. Am. J. Cardiol. 101(5), 696–699 (2008)

    Google Scholar 

  71. Johansson, G., Markström, U., Swedenborg, J.: Ruptured thoracic aortic aneurysms: a study of incidence and mortality rates. J. Vasc. Surg. 21, 985–988 (1995)

    Google Scholar 

  72. Jones, K., Powell, J., Brown, L., et al.: The influence of 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene promoter on the incidence, growth and operative risk of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 23(5), 421–425 (2002)

    Google Scholar 

  73. Kazi, M., Thyberg, J., Religa, P.: Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38(6), 1283–1292 (2003)

    Google Scholar 

  74. Kazi, M., Zhu, C., Roy, J., et al.: Difference in matrix-degrading protease expression and activity between thrombus-free and thrombus-covered wall of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 25(7), 1341–1346 (2005)

    Google Scholar 

  75. Khau Van Kien, P., Mathieu, F., Zhu, L., et al.: Mapping of familial thoracic aortic aneurysm/dissection with patent ductus arteriosus to 16p12.2–p13.13. Circulation 112, 200–206 (2005)

    Google Scholar 

  76. Kniemeyer, H.W., Kessler, T., Reber, P.U., et al.: Treatment of ruptured abdominal aortic aneurysm, a permanent challenge or a waste of resources? Prediction of outcome using a multi-organ-dysfunction score. Eur. J. Vasc. Endovasc. Surg. 19(2), 190–196 (2000)

    Google Scholar 

  77. Knox, J.B., Sukhova, G.K., Whittemore, A.D., Libby, P.: Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95, 205–212 (1997)

    Google Scholar 

  78. Koch, A.E., Kunkel, S.L., Pearce, W.H., et al.: Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am. J. Pathol. 142(5), 1423–1431 (1993)

    Google Scholar 

  79. Koksal, C., Ercan, M., Boskurt, A.K., et al.: Abdominal aortic aneurysm or aortic occlusive disease: role of trace element imbalance. Angiology 58, 191–195 (2007)

    Google Scholar 

  80. Kuivaniemi, H., Tromp, G.: Search for the aneurysm susceptibility gene(s). In: Keen, R.R., Dobrin, P.B. (eds.) Development of Aneurysms, pp. 219–233. Landes Bioscience, Georgetown (2000)

    Google Scholar 

  81. Kuivaniemi, H., Shibamura, H., Arthur, C., et al.: Familial abdominal aortic aneurysms: collection of 233 multiplex families. J. Vasc. Surg. 37, 340–345 (2003)

    Google Scholar 

  82. Kuivaniemi, H., Kyo, Y., Lenk, G., Tromp, G.: Genome-wide approach to finding abdominal aortic aneurysm susceptibility genes in humans. Ann. N. Y. Acad. Sci. 1085, 270–281 (2006)

    Google Scholar 

  83. Kuivaniemi, H., Platsoucas, C.D., Tilson, M.D., 3rd: Aortic aneurysms: an immune disease with a strong genetic component. Circulation 117, 242–252 (2008)

    Google Scholar 

  84. Kuivaniemi, H., Boddy, A.M., Lillvis, J.H., et al.: Abdominal aortic aneurysms are deep, deadly and genetic. In: Sakalihasan, N., Kuivaniemi, H., Michel Liège, J.B. (eds.) Aortic aneurysms, new insights into an old problem, pp. 299–323. Liège University Press, Belgium (2008)

    Google Scholar 

  85. Lapière, Ch.M., Courtois, A., Nusgens, B.: Extracellular matrix proteins in normal and aneurysmal aorta. In: Sakalihasan, N., Kuivaniemi, H., Michel, J.B. (eds.) Aortic Aneurysms, New Insights into an Old Problem, pp. 67–83. Les Editions de l’Université de Liège, Liège (2008)

    Google Scholar 

  86. Lederle, F.A.: In the clinic. Abdominal aortic aneurysm. Ann Intern Med 150:ITC5-1-15 (2009)

    Google Scholar 

  87. Lederle, F.A., Johnson, G.R., Wilson, S.E., et al.: The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm detection and management veterans affairs cooperative study investigators. Arch. Intern. Med. 160(10), 1425–1430 (2000)

    Google Scholar 

  88. Lederle, F.A., Johnson, G.R., Wilson, S.E.: Abdominal aortic aneurysm in women. J. Vasc. Surg. 34(1), 122–126 (2001)

    Google Scholar 

  89. Lederle, F.A., Gary, R.J., Samuel, E.W., et al.: Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 287(22), 2968–2972 (2002)

    Google Scholar 

  90. Lenk, G.M., Tromp, G., Weinsheimer, S., et al.: Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics 8, 237 (2007)

    Google Scholar 

  91. Liddington, M.I., Heather, B.P.: The relationship between aortic diameter and body habitus. Eur. J. Vasc. Surg. 6(1), 89–92 (1992)

    Google Scholar 

  92. Lillvis, J.H., Lenk, G.M., Kuivaniemi, H.: Genetics of Abdominal Aortic Aneurysms. In: Upchurch, G., Criado, E. (eds.) Aortic Aneurysms: pathogenesis and treatment, pp. 1–26. Humana Press Inc., Totowa, NJ (2009)

    Google Scholar 

  93. Limet, R., Sakalihassan, N., Albert, A.: Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14(4), 540–548 (1991)

    Google Scholar 

  94. Lindholt, J.S., Vammen, S., Fasting, H., Henneberg, E.W., Heickendorff, L.: The plasma level of matrix metalloproteinase 9 may predict the natural history of small abdominal aortic aneurysms. A preliminary study. Eur. J. Vasc. Endovasc. Surg. 20(3), 281–285 (2000)

    Google Scholar 

  95. Lindholt, J.S., Vammen, S., Juul, S., et al.: Optimal interval screening and surveillance of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 20(4), 369–373 (2000)

    Google Scholar 

  96. Lindholt, J.S., Heegaard, N.H., Vammen, S., et al.: Smoking, but not lipids, lipoprotein(a) and antibodies against oxidised LDL, is correlated to the expansion of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 21(1), 51–56 (2001)

    Google Scholar 

  97. Lobato, A.C., Puech-LeLeão, P.: Predictive factors for rupture of thoraco-abdominal aortic aneurysm. J. Vasc. Surg. 27(3), 446–453 (1998)

    Google Scholar 

  98. Longo, G.M., Xiong, W., Greiner, T.C., et al.: Matrix metalloproteinases 2 and 9 work in concert to product aortic aneurysms. J. Clin. Invest. 110(5), 625–632 (2002)

    Google Scholar 

  99. MacSweeney, S.T., Ellis, M., Worrell, P.C., et al.: Smoking and growth rate of small abdominal aortic aneurysms. Lancet 344(8923), 651–652 (1994)

    Google Scholar 

  100. Madaric, J., Vulev, I., Bartunek, J., et al.: Frequency of abdominal aortic aneurysm in patients >60 years of age with coronary artery disease. Am. J. Cardiol. 96(9), 1214–1216 (2005)

    Google Scholar 

  101. Majumder, P.P., St Jean, P.L., Ferrell, R.E., et al.: On the inheritance of abdominal aortic aneurysm. Am. J. Hum. Genet. 48, 164–170 (1991)

    Google Scholar 

  102. Mao, D., Lee, J.K., Van Vickle, S.J., Thompson, R.W.: Expression of collagenase-3 (MMP-13) in human abdominal aortic aneurysms and vascular smooth muscle cells in culture. Biochem. Biophys. Res. Commun. 261(3), 904–910 (1999)

    Google Scholar 

  103. Matsumura, K., Hirano, T., Takeda, K., et al.: Incidence of aneurysms in Takayasu’s arteritis. Angiology 42(4), 308–315 (1991)

    Google Scholar 

  104. McCormick, M.L., Gavrila, D., Weintraub, N.L.: Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 27(3), 461–469 (2007)

    Google Scholar 

  105. McGregor, J.C., Pollock, J.G., Anton, H.C.: The value of ultrasonography in the diagnosis of abdominal aortic aneurysms. Scott. Med. J. 20, 133–137 (1975)

    Google Scholar 

  106. McMillan, W.D., Pearce, W.H.: Increased plasma levels of metalloproteinase-9 are associated with abdominal aortic aneurysms. J. Vasc. Surg. 29(1), 122–127 (1999). discussion 127-9

    Google Scholar 

  107. Menashi, S., Campa, J.S., Greenhalgh, R.M., Powel, J.T.: Collagen in abdominal aortic aneurysm: typing, content and degradation. J. Vasc. Surg. 6, 578–582 (1987)

    Google Scholar 

  108. Michel, J.B., Thaunat, O., Houard, X., et al.: Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler. Thromb. Vasc. Biol. 27(6), 1259–1268 (2007)

    Google Scholar 

  109. Milewicz, D.M., Guo, D.C., Tran-Fadulu, V., et al.: Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu. Rev. Genomics Hum. Genet. 9, 283–302 (2008)

    Google Scholar 

  110. Miller Jr, F.J., Sharp, W.J., Fang, X., et al.: Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler. Thromb. Vasc. Biol. 22(4), 560–565 (2002)

    Google Scholar 

  111. Nevitt, M.P., Ballard, D.J., Hallett Jr, J.W.: Prognosis of abdominal aortic aneurysms. A population-based study. N. Engl. J. Med. 321(15), 1009–1014 (1989)

    Google Scholar 

  112. Newman, K.M., Jean-Claude, J., Li, H., et al.: Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall. J. Vasc. Surg. 20, 814–820 (1994)

    Google Scholar 

  113. Newman, M.P., Jean-Claude, J., Li, H., et al.: Cytokines that activate proteolysis are increased in abdominal aortic aneurysms. Circulation 90(5Pt 2), 1224–1227 (1994)

    Google Scholar 

  114. Nischan, J., Gatalica, Z., Curtis, M., et al.: Binding sites for ETS family of transcription factors dominate the promoter regions of differentially expressed genes in abdominal aortic aneurysms. Circ. Cardiovasc. Genet. 2, 565–572 (2009)

    Google Scholar 

  115. Nischan, J., Lenk, G.M., Boddy, A.M., et al.: Abdominal Aortic Aneurysms – a Complex Genetic Disease. In: Laurent, A., Morel, E. (eds.) Aneurysms: Types, Risks, Formation and Treatment (ISBN: 978-1-60741-557-2), pp. 35–93. Nova Science Publishers, Inc, Hauppauge, NY (2009)

    Google Scholar 

  116. Nistri, S., Sorbo, M.D., Marin, M., et al.: Aortic root dilatation in young men with normally functioning bicuspid aortic valves. Heart 82, 19–22 (1999)

    Google Scholar 

  117. Nollendorfs, A., Greiner, T.C., Nagase, H., Baxter, B.T.: The expression and localization of membrane type-1 matrix metalloproteinase in human abdominal aortic aneurysms. J. Vasc. Surg. 34(2), 316–322 (2001)

    Google Scholar 

  118. Nordon, I.M., Hinchliffe, R.J., Holt, P.J., et al.: Review of current theories for abdominal aortic aneurysm pathogenesis. Vascular 17(5), 253–263 (2009)

    Google Scholar 

  119. Norrgård, Ö., Rais, O., Ängquist, K.A.: Familial occurrence of abdominal aortic aneurysms. Surgery 95, 650–656 (1984)

    Google Scholar 

  120. Ogata, T., MacKean, G.L., Cole, C.W., et al.: The lifetime prevalence of abdominal aortic aneurysms among siblings of aneurysm patients is eightfold higher than among siblings of spouses: an analysis of 187 aneurysm families in Nova Scotia; Canada. J. Vasc. Surg. 42, 891–897 (2005)

    Google Scholar 

  121. Ogata, T., Gregoire, L., Goddard, K.A., et al.: Evidence for association between the HLA-DQA locus and abdominal aortic aneurysms in the Belgian population: a case control study. BMC Med. Genet. 7, 67 (2006)

    Google Scholar 

  122. Olsson, C., Thelin, S., Ståhle, E., et al.: Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14 000 cases from 1987 to 2002. Circulation 114, 2611–2618 (2006)

    Google Scholar 

  123. Pachulski, R.T., Weinberg, A.L., Chan, K.L.: Aortic aneurysm in patients with functionally normal or minimally stenotic bicuspid aortic valve. Am. J. Cardiol. 67(8), 781–782 (1991)

    Google Scholar 

  124. Phillippi, J.A., Klyachko, E.A., Kenny, J.P., 4th, Eskay, M.A., Gorman, R.C., Gleason, T.G.: Basal and oxidative stress–induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients circulation 119, 2498–2506 (2009)

    Google Scholar 

  125. Powell, J.T.: Familial clustering of abdominal aortic aneurysm–smoke signals, but no culprit genes. Br. J. Surg. 90(10), 1173–1174 (2003)

    Google Scholar 

  126. Powell, J.T., Brown, L.C., Greenhalgh, R.M., et al.: The rupture rate of large abdominal aortic aneurysms: is this modified by anatomical suitability for endovascular repair? Ann. Surg. 247, 173–179 (2008)

    Google Scholar 

  127. Pressler, V., McNamara, J.J.: Aneurysm of the thoracic aorta. Review of 260 cases. J. Thorac. Cardiovasc. Surg. 89(1), 50–54 (1985)

    Google Scholar 

  128. Pyo, R., Lee, J.K., Shipley JM, J., et al.: Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105(11), 1641–1649 (2000)

    Google Scholar 

  129. Ramanath, V.S., Oh, J.K., Sundt 3rd, T.M., Eagle, K.A.: Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin. Proc. 84(5), 465–481 (2009)

    Google Scholar 

  130. Rao, S.K., Reddy, K.V., Cohen, J.R.: Role of serine proteases in aneurysm development. Ann. N. Y. Acad. Sci. 800, 131–137 (1996)

    Google Scholar 

  131. Reed, D., Reed, C., Stemmermann, G., Hayashi, T.: Are aortic aneurysms caused by atherosclerosis? Circulation 85(1), 205–211 (1992)

    Google Scholar 

  132. Reeps, C., Essler, M., Pelisek, J., et al.: Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J. Vasc. Surg. 48(2), 417–423 (2008)

    Google Scholar 

  133. Reilly, J.M.: Plasminogen activors in abdominal aortic aneurysmal disease. Ann. N. Y. Acad. Sci. 800, 151–156 (1996)

    Google Scholar 

  134. Rizzo, R.J., McCarthy, W.J., Dixit, S.N., et al.: Collagen types and matrix protein content in human abdominal aortic aneurysms. J. Vasc. Surg. 10, 365–373 (1989)

    Google Scholar 

  135. Rossaak, J.I., Van Rij, A.M., Jones, G.T., Harris, E.L.: Association of the 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor-1 with abdominal aortic aneurysms. J. Vasc. Surg. 31(5), 1026–1032 (2000)

    Google Scholar 

  136. Rouis, M., Adamy, C., Duverger, N., et al.: Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice. Circulation 100(5), 533–540 (1999)

    Google Scholar 

  137. Ruddy, J.M., Jones, J.A., Spinale, F.G., Ikonomidis, J.S.: Regional heterogeneity within the aorta: relevance to aneurysm disease. J. Thorac. Cardiovasc. Surg. 136(5), 1123–1130 (2008)

    Google Scholar 

  138. Sakalihasan, N., Heyeres, A., Nusgens, B.V., et al.: Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur. J. Vasc. Surg. 7, 633–637 (1993)

    Google Scholar 

  139. Sakalihasan, N., Delvenne, P., et al.: Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 24(1), 127–133 (1996)

    Google Scholar 

  140. Sakalihasan, N., Pincemail, J., Defraigne, J.O., et al.: Decrease of plasma vitamin E (alpha-tocopherol) levels in patients with abdominal aortic aneurysm. Ann. N. Y. Acad. Sci. 800, 278–282 (1996)

    Google Scholar 

  141. Sakalihasan, N., Van Damme, H., Gomez, P., et al.: Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur. J. Vasc. Endovasc. Surg. 23(5), 431–436 (2002)

    Google Scholar 

  142. Sakalihasan, N., Limet, R., Defawe, O.D.: Abdominal aortic aneurysm. Lancet 365(9470), 1577–1589 (2005)

    Google Scholar 

  143. Schlösser, F.J., Vaartjes, I., van der Heijden, G.J., et al.: Mortality after elective abdominal aortic aneurysm repair. Ann. Surg. 251(1), 158–164 (2010)

    Google Scholar 

  144. Scott, R.A., Ashton, H.A., Kay, D.N.: Abdominal aortic aneurysm in 4237 screened patients: prevalence, development and management over 6 years. Br. J. Surg. 78(9), 1122–1125 (1991)

    Google Scholar 

  145. Shah, P.K.: Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm. Circulation 96(7), 2115–2117 (1997)

    Google Scholar 

  146. Shantikumar, S., Ajjan, R., Porter, K.E., Scott, D.J.: Diabetes and the abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 39, 200–207 (2010)

    Google Scholar 

  147. Shi, G.P., Sukhova, G.K., Grubb, A., et al.: Cystatin C deficiency in human atherosclerosis and aortic aneurysm. J. Clin. Invest. 104(9), 1191–1197 (1999)

    Google Scholar 

  148. Shibamura, H., Olson, J.M., van Vlijmen-Van Keulen, C., et al.: Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifies linkage to chromosome 19q13. Circulation 109, 2103–2108 (2004)

    Google Scholar 

  149. Shiraya, S., Miyake, T., Aoki, M., et al.: Inhibition of development of experimental aortic abdominal aneurysm in rat model by atorvastatin through inhibition of macrophage migration. Atherosclerosis 202(1), 34–40 (2009)

    Google Scholar 

  150. Silence, J., Lupu, F., Collen, D., Lijnen, H.R.: Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with Stromelysin-1 (MMP-3) gene inactivation. Arterioscler. Thromb. Vasc. Biol. 21(9), 1440–1445 (2001)

    Google Scholar 

  151. Singh, K., Bonaa, K.H., Jacobsen, B.K., Bjork, L., Solberg, S.: Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study: the Tromso Study. Am. J. Epidemiol. 154(3), 236–244 (2001)

    Google Scholar 

  152. Slaney, S.G.: A history of aneurysm surgery. In: Greenhalgh, R.M., Mannick, J.A. (eds.) The Cause and Management of Aneurysm, pp. 1–19. WB Saunders Co., London (1990)

    Google Scholar 

  153. Tamarina, N.A., McMillan, W.D., Shively, V.P., Pearce, W.H.: Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery 122, 264–271 (1997)

    Google Scholar 

  154. Thomas, M., Gavrila, D., McCormick, M.L., et al.: Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation 114, 404–413 (2006)

    Google Scholar 

  155. Thompson, M.M.: Controlling the expansion of abdominal aortic aneurysms. Br. J. Surg. 90(8), 897–898 (2003)

    Google Scholar 

  156. Thompson, R.W., Geraghty, P.J., Lee, J.K.,: Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr. Probl. Surg. 39, 110–230 (2002).

    Google Scholar 

  157. Thompson, R.W., Parks, W.C.: Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann. N. Y. Acad. Sci. 800, 157–174 (1996). Review

    Google Scholar 

  158. Tilson, M.D.: Aortic aneurysms and atherosclerosis. Circulation 85(1), 378–379 (1992)

    Google Scholar 

  159. Tilson, M.D., Seashore, M.R.: Fifty families with abdominal aortic aneurysms in two or more first-order relatives. Am. J. Surg. 147, 551–553 (1984)

    Google Scholar 

  160. Towbin, J.A., Casey, B., Belmont, J.: The molecular basis of vascular disorders. Am. J. Hum. Genet. 64(3), 678–684 (1999)

    Google Scholar 

  161. Tromp, G., Kuivaniemi, H.: How does one study genetic risk factors in a complex disease such as aneurysm. In: Sakalihasan, N., Kuivaniemi, H., Michel, J.B. (eds.) Aortic Aneurysms, New insights into an old problem, pp. 115–144. Liege University Press, Liege, Belgium (2008)

    Google Scholar 

  162. Tromp, G., Kuivaniemi, H.: Developments in genomics to improve understanding, diagnosis and management of aneurysms and peripheral artery disease. Eur. J. Vasc. Endovasc. Surg. 38, 676–682 (2009)

    Google Scholar 

  163. Tromp, G., Gatalica, Z., Skunca, M., et al.: Elevated expression of matrix metalloproteinase-13 in abdominal aortic aneurysms. Ann. Vasc. Surg. 18(4), 414–420 (2004)

    Google Scholar 

  164. Tromp, G., Kuivaniemi, H., Hinterseher, I., Carey, D.J.: Novel genetic mechanisms for aortic aneurysms. Curr. Atheroscler. Rep. 12, 259–266 (2010)

    Google Scholar 

  165. Truijers, M., Kurvers, H.A., Bredie, S.J., et al.: In vivo imaging of abdominal aortic aneurysms; increased FDG uptake suggests inflammation in the aneurysmal wall. J. Endovasc. Ther. 15(4), 462–467 (2008)

    Google Scholar 

  166. UK Small Aneurysm Trial Participants: Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352, 1649–1655 (1998)

    Google Scholar 

  167. UK Small Aneurysm Trial Participants: Long-term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Engl. J. Med. 346(19), 1445–1452 (2002)

    Google Scholar 

  168. Van Kuijk, Jp.P., Flu, W.J., Witteveen, O.P., et al.: The influence of statins on the expansion rate and rupture risk of abdominal aortic aneurysms. J. Cardiovasc. Surg. (Torino) 50(5), 599–609 (2009)

    Google Scholar 

  169. Van Vlijmen-Van Keulen, C.J., Rauwerda, J.A., Pals, G.: Genome-wide linkage in three Dutch families maps a locus for abdominal aortic aneurysms to chromosome 19q13.3. Eur. J. Vasc. Endovasc. Surg. 30, 29–35 (2005)

    Google Scholar 

  170. Vardulaki, K.A., Walker, N.M., Day, N.E., et al.: Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. Br. J. Surg. 87(2), 195–200 (2000)

    Google Scholar 

  171. Verloes, A., Sakalihasan, N., Koulischer, L., et al.: Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J. Vasc. Surg. 21, 646–655 (1995)

    Google Scholar 

  172. Visel, A., Zhu, Y., May, D., et al.: Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412 (2010)

    Google Scholar 

  173. Vollmar, J.F., Pauschinger, P., Paes, E., et al.: Aortic aneurysms as a late sequellae of above-knee amputation. Lancet ii, 834–835 (1989)

    Google Scholar 

  174. Vorp, D.A., Lee, P.C., Wang, D.H., et al.: Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34(2), 291–299 (2001)

    Google Scholar 

  175. Wagenseil, J.E., Mecham, R.P.: Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89, 957–989 (2009)

    Google Scholar 

  176. Wahlgren, C.M., Larsson, E., Magnusson, P.K., et al.: Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J. Vasc. Surg. 51, 3–7 (2010)

    Google Scholar 

  177. Walton, L.J., Franklin, I.J., Bayston, T., et al.: Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 100(1), 48–54 (1999)

    Google Scholar 

  178. Weinsheimer, S., Lenk, G.M., van der Voet, M., et al.: Integration of expression profiles and genetic mapping data to identify candidate genes in intracranial aneurysm. Phys. Genomics 32, 45–57 (2007)

    Google Scholar 

  179. Weiss, J.S., Sumpio, B.E.: Review of prevalence and outcome of vascular disease in patients with diabetes mellitus. Eur. J. Vasc. Endovasc. Surg. 31(2), 143–150 (2006)

    Google Scholar 

  180. Wilmink, T.B., Quick, C.R., Hubbard, C.S., Day, N.E.: The influence of screening on the incidence of ruptured abdominal aortic aneurysms. J. Vasc. Surg. 30(2), 203–208 (1999)

    Google Scholar 

  181. Xiong, W., Mactaggart, J., Knispel, R., et al.: Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model. Atherosclerosis 202(1), 128–134 (2009)

    Google Scholar 

  182. Xu, C., Zarins, C.K., Glagov, S.: Aneurysmal and occlusive atherosclerosis of the human abdominal aorta. J. Vasc. Surg. 33(1), 91–96 (2001)

    Google Scholar 

  183. Xu, X.Y., Borghi, A., Nchimi, A., et al.: High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur. J. Vasc. Endovasc. Surg. 39(3), 295–301 (2010)

    Google Scholar 

  184. Yajima, N., Masuda, M., Miyazaki, M., et al.: Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: a study of the transcription profile with complementary DNA microarray. J. Vasc. Surg. 36(2), 379–385 (2002)

    Google Scholar 

  185. Yamasumi, K., Ojiro, M., Okumura, H., Aikou, T.: An activated state of blood coagulation and fibrinolysis in patients with abdominal aortic aneurysm. Am. J. Surg. 175(4), 297–301 (1998)

    Google Scholar 

  186. Yasuda, H., Nakatani, S., Stugaard, M., et al.: Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Circulation 108(Suppl 1), II291–II294 (2003)

    Google Scholar 

  187. Yasuno, K., Bilguvar, K., Bijlenga, P., et al.: Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat. Genet. 42, 420–425 (2010)

    Google Scholar 

  188. Zhang, J., Schmidt, J., Ryschich, E., et al.: Inducible nitric oxide synthase is present in human abdominal aortic aneurysm and promotes oxidative vascular injury. J. Vasc. Surg. 38(2), 360–367 (2003)

    Google Scholar 

  189. Zhu, L., Vranckx, R., Khau Van Kien, P., et al.: Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat. Genet. 38, 343–349 (2006)

    Google Scholar 

Download references

Acknowledgments

The original work (Genetics) carried out in the Kuivaniemi laboratory was funded in part by the National Heart, Lung, and Blood Institute of the NIH (grants HL045996 and HL064310 to H.K.).

The Department of Cardiovascular surgery University hospital of Liège is supported by the European Union integrated project ‘‘Fighting Aneurysmal Disease’’ (FAD, http://www.fighting-aneurysm.org/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natzi Sakalihasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sakalihasan, N., Kuivaniemi, H., Nusgens, B., Durieux, R., Defraigne, JO. (2010). Aneurysm: Epidemiology Aetiology and Pathophysiology. In: McGloughlin, T. (eds) Biomechanics and Mechanobiology of Aneurysms. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_47

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18094-1

  • Online ISBN: 978-3-642-18095-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics