Skip to main content

Computational Studies on Natural Products for the Development of Multi-target Drugs

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Secondary plant metabolites represent “privileged structures” in drug development; they frequently interact with multiple protein targets within the body. For example, the anti-inflammatory natural product resveratrol from red wine has been shown to be active on over ten targets. Computational methods allow us to tackle the complexity of plant extracts, which often contain multiple active structures, which are in turn interacting with multiple targets. Virtual screening-based target fishing with pharmacophore modeling can help to identify protein targets, and docking simulations can be employed to propose a binding mechanism. Computational methods also play an important role in the analysis of plant extracts. Dereplication databases can be used to compare mass spectra of new extracts to a database of literature data to identify already known natural products. Activity networks of plant constituents help to understand the effect of extracts on specific pathologies and help to determine the active principles. We provide an overview, over the currently used computational methods in natural product research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reddy A, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Phar 6(1). https://doi.org/10.1586/ecp.12.74

    Article  CAS  PubMed  Google Scholar 

  2. Vane J (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232. https://doi.org/10.1038/newbio231232a0

    Article  CAS  PubMed  Google Scholar 

  3. Urmi D, Vincenzo C, Roland P et al (2007) A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20 alpha-hydroxysteroid dehydrogenase. Med Chem 3(6):546–550. https://doi.org/10.2174/157340607782360399

    Article  Google Scholar 

  4. Din F, Valanciute A, Houde V et al (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(7):1504–1515.e1503. https://doi.org/10.1053/j.gastro.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  5. Talbodec A, Berkane N, Blandin V et al (2000) Aspirin and sodium salicylate inhibit endothelin ETA receptors by an allosteric type of mechanism. Mol Pharmacol 57(4):797–804. https://doi.org/10.1124/mol.57.4.797

    Article  CAS  PubMed  Google Scholar 

  6. Jeong W, Doroshow J, Kummar S et al (2013) US FDA approved oral kinase inhibitors for the treatment of malignancies. Curr Probl Cancer 37(3):110–144. https://doi.org/10.1016/j.currproblcancer.2013.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koch M, Waldmann H (2005) Natural product-derived compound libraries and protein structure similarity as guiding principles for the discovery of drug candidates. In: Kubinyi H (ed) Chemogenomics in drug discovery. Wiley, New York. https://doi.org/10.1002/3527603948.ch14

    Chapter  Google Scholar 

  8. Koch M, Schuffenhauer A, Scheck M et al (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci U S A 102(48):17272–17277. https://doi.org/10.1073/pnas.0503647102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kulkarni S, Cantó C (2015) The molecular targets of resveratrol. Biochim Biophys Acta 1852(6):1114–1123. https://doi.org/10.1016/j.bbadis.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Aggarwal B, Surh Y, Shishodia S (eds) (2013) The molecular targets and therapeutic uses of curcumin in health and disease. Springer, Heidelberg

    Google Scholar 

  11. Wang J, Zhang C, Chia W (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111. https://doi.org/10.1038/ncomms10111

    Article  CAS  PubMed  Google Scholar 

  12. Pascolutti M, Quinn R (2014) Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov Today 19(3):215–221. https://doi.org/10.1016/j.drudis.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  13. Hu Y, Bajorath J (2014) Monitoring drug promiscuity over time. F1000Res 3:218. https://doi.org/10.12688/f1000research.5250.2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Méndez-Lucio O, Naveja J, Vite-Caritino H et al (2016) F.D. One drug for multiple targets: a computational perspective. J Mex Chem Soc 60:168–181

    Google Scholar 

  15. Weller M (2012) A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors (Basel) 12(7):9181

    Article  CAS  Google Scholar 

  16. Jacoby E (2011) Computational chemogenomics. Wires Comput Mol Sci 1(1):57–67. https://doi.org/10.1002/wcms.11

    Article  CAS  Google Scholar 

  17. Oettl S, Hubert J, Nuzillard J et al (2014) Dereplication of depsides from the lichen pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition. Anal Chim Acta 846:60–67. https://doi.org/10.1016/j.aca.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  18. Allard P, Péresse T, Bisson J et al (2016) Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal Chem 88(6):3317–3323. https://doi.org/10.1021/acs.analchem.5b04804

    Article  CAS  PubMed  Google Scholar 

  19. Morphy R, Rankovic (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48(21):6523–6543. https://doi.org/10.1021/jm058225d

    Article  CAS  PubMed  Google Scholar 

  20. Steindl T, Schuster D, Laggner C et al (2006) Parallel screening: a novel concept in pharmacophore modeling and virtual screening. J Chem Inf Model 46(5):2146–2157. https://doi.org/10.1021/ci6002043

    Article  CAS  PubMed  Google Scholar 

  21. Steindl T, Schuster D, Wolber G et al (2006) High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. J Comput Aided Mol Des 20(12):703–715. https://doi.org/10.1007/s10822-006-9066-y

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Ouyang S, Yu B et al (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38(2):609–614. https://doi.org/10.1093/nar/gkq300

    Article  CAS  Google Scholar 

  23. Wang X, Shen Y, Wang S (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45:356–360. https://doi.org/10.1093/nar/gkx374

    Article  CAS  Google Scholar 

  24. Rollinger J, Schuster D, Danzl B et al (2009) In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens. Planta Med 75(3):195–204. https://doi.org/10.1055/s-0028-1088397

    Article  CAS  PubMed  Google Scholar 

  25. Duwensee K, Schwaiger S, Tancevski I et al (2011) Leoligin, the major lignan from edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 219(1):109–115. https://doi.org/10.1016/j.atherosclerosis.2011.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scharinger B, Messner B, Türkcan A et al (2016) Leoligin, the major lignan from edelweiss, inhibits 3-hydroxy-3-methyl-glutaryl-CoA reductase and reduces cholesterol levels in ApoE−/− mice. J Mol Cell Cardiol 99:35–46. https://doi.org/10.1016/j.yjmcc.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  27. Kratz J, Mair C, Oettl S et al (2016) hERG channel blocking ipecac alkaloids identified by combined in silico – in vitro screening. Planta Med 82(11):1009–1015. https://doi.org/10.1055/s-0042-105572

    Article  CAS  PubMed  Google Scholar 

  28. Schaible A, Traber H, Temml V et al (2013) Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin. Biochem Pharmacol 86(4):476–486. https://doi.org/10.1016/j.bcp.2013.04.015

    Article  CAS  PubMed  Google Scholar 

  29. Reker D, Perna A, Rodrigues T et al (2014) Revealing the macromolecular targets of complex natural products. Nat Chem 6:1072. https://doi.org/10.1038/nchem.2095

    Article  CAS  PubMed  Google Scholar 

  30. Alsabil K, Suor-Cherer S, Koeberle A et al (2016) Semisynthetic and natural garcinoic acid isoforms as new mPGES-1 inhibitors. Planta Med 82(11):1110–1116. https://doi.org/10.1055/s-0042-108739

    Article  CAS  PubMed  Google Scholar 

  31. Pein H, Helesbeux J-J, Garscha U et al (2018) Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun (in revision)

    Google Scholar 

  32. Park H, Lee S, Hong S (2016) Discovery of dual inhibitors for wild type and D816V mutant of c-KIT kinase through virtual and biochemical screening of natural products. J Nat Prod 79(2):293–299. https://doi.org/10.1021/acs.jnatprod.5b00851

    Article  CAS  PubMed  Google Scholar 

  33. Quoc-Tuan D, Isabelle R, Patrice A et al (2005) Reverse pharmacognosy: application of selnergy, a new tool for lead discovery. The example of epsilon viniferin. Curr Drug Discov Technol 2(3):161–167. https://doi.org/10.2174/1570163054866873

    Article  Google Scholar 

  34. Do Q-T, Lamy C, Renimel I et al (2007) Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin. Planta Med 73(12):1235–1240. https://doi.org/10.1055/s-2007-990216

    Article  CAS  PubMed  Google Scholar 

  35. Ntie-Kang F, Simoben C, Karaman B et al (2016) Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants. Drug Des Devel Ther 10:2137–2154. https://doi.org/10.2147/DDDT.S108118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Yang L, Hou J et al (2018) Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. J Biomol Struct Dyn:1–59. https://doi.org/10.1080/07391102.2018.1434833

  37. Gfeller D, Grosdidier A, Wirth M et al (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(1):32–38. https://doi.org/10.1093/nar/gku293

    Article  CAS  Google Scholar 

  38. Reker D, Rodrigues T, Schneider P et al (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 111(11):4067–4072. https://doi.org/10.1073/pnas.1320001111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reutlinger M, Koch C, Reker D et al (2013) Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for ‘orphan’ molecules. Mol Inform 32(2):133–138. https://doi.org/10.1002/minf.201200141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reker D, Seet M, Pillong M et al (2014) Deorphaning pyrrolopyrazines as potent multi-target antimalarial agents. Angew Chem Int Ed Engl 53(27):7079–7084. https://doi.org/10.1002/anie.201311162

    Article  CAS  PubMed  Google Scholar 

  41. Schneider P, Schneider G (2017) De-orphaning the marine natural product (±)-marinopyrrole A by computational target prediction and biochemical validation. Chem Commun 53:2272–2274. https://doi.org/10.1039/C6CC09693J

    Article  CAS  Google Scholar 

  42. Lagunin A, Stepanchikova A, Filimonov D et al (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16(8):747–748. https://doi.org/10.1093/bioinformatics/16.8.747

    Article  CAS  PubMed  Google Scholar 

  43. Lagunin A, Filipov D, Poroikov V (2010) Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des 16(15):1703–1717. https://doi.org/10.2174/138161210791164063

    Article  CAS  PubMed  Google Scholar 

  44. Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 323(2):387–406. https://doi.org/10.1016/S0022-2836(02)00811-2

    Article  CAS  PubMed  Google Scholar 

  45. Shulman-Peleg A, Nussinov R, Wolfson H (2005) SiteEngines: recognition and comparison of binding sites and protein–protein interfaces. Nucleic Acids Res 33(2):337–341. https://doi.org/10.1093/nar/gki482

    Article  CAS  Google Scholar 

  46. von Behren M, Volkamer A, Henzler A et al (2013) Fast protein binding site comparison via an index-based screening technology. J Chem Inf Model 53(2):411–422. https://doi.org/10.1021/ci300469h

    Article  CAS  Google Scholar 

  47. Baroni M, Cruciani G, Sciabola S et al (2007) A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): theory and application. J Chem Inf Model 47(2):279–294. https://doi.org/10.1021/ci600253e

    Article  CAS  PubMed  Google Scholar 

  48. Weill N, Rognan D (2010) Alignment-free ultra-high-throughput comparison of druggable protein−ligand binding sites. J Chem Inf Model 50(1):123–135. https://doi.org/10.1021/ci900349y

    Article  CAS  PubMed  Google Scholar 

  49. Ehrt C, Brinkjost T, Koch O (2016) Impact of binding site comparisons on medicinal chemistry and rational molecular design. J Med Chem 59(9):4121–4151. https://doi.org/10.1021/acs.jmedchem.6b00078

    Article  CAS  PubMed  Google Scholar 

  50. Dekker F, Koch M, Waldmann H (2005) Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics. Curr Opin Chem Biol 9(3):232–239. https://doi.org/10.1016/j.cbpa.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  51. Koch M, Wittenberg L-O, Basu S et al (2004) Compound library development guided by protein structure similarity clustering and natural product structure. Proc Natl Acad Sci U S A 101(48):16721–16726. https://doi.org/10.1073/pnas.0404719101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vicini P, van der Graaf P (2013) Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan? Clin Pharmacol Ther 93(5):379–381. https://doi.org/10.1038/clpt.2013.40

    Article  CAS  PubMed  Google Scholar 

  53. Lamb J, Crawford E, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935. https://doi.org/10.1126/science.1132939

    Article  CAS  PubMed  Google Scholar 

  54. Tiedemann R, Schmidt J, Keats J et al (2009) Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-κB with antimyeloma activity in vitro and in vivo. Blood 113(17):4027–4037. https://doi.org/10.1182/blood-2008-09-179796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Banerjee S, Li Y, Wang Z et al (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242. https://doi.org/10.1016/j.canlet.2008.03.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carrella D, Napolitano F, Rispoli R et al (2014) Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics 30(12):1787–1788. https://doi.org/10.1093/bioinformatics/btu058

    Article  CAS  PubMed  Google Scholar 

  57. Kibble M, Saarinen N, Tang J et al (2015) Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep 32(8):1249–1266. https://doi.org/10.1039/C5NP00005J

    Article  CAS  PubMed  Google Scholar 

  58. Hubert J, Nuzillard J-M, Renault J-H (2017) Dereplication strategies in natural product research: how many tools and methodologies behind the same concept? Phytochem Rev 16(1):55–95. https://doi.org/10.1007/s11101-015-9448-7

    Article  CAS  Google Scholar 

  59. Kurita K, Glassey E, Linington R (2015) Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc Natl Acad Sci U S A 112(39):11999–12004. https://doi.org/10.1073/pnas.1507743112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Olivon F, Allard P-M, Koval A et al (2017) Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol 12(10):2644–2651. https://doi.org/10.1021/acschembio.7b00413

    Article  CAS  PubMed  Google Scholar 

  61. Bento A, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(1):1083–1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  Google Scholar 

  62. Feher M, Schmidt J (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43(1):218–227. https://doi.org/10.1021/ci0200467

    Article  CAS  PubMed  Google Scholar 

  63. Rosén J, Gottfries J, Muresan S et al (2009) Novel chemical space exploration via natural products. J Med Chem 52(7):1953–1962. https://doi.org/10.1021/jm801514w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lipinski C, Lombardo F, Dominy B et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development. Adv Drug Deliv Rev 46(1):3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  65. Baell J, Holloway G (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  66. Baell J (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79(3):616–628. https://doi.org/10.1021/acs.jnatprod.5b00947

    Article  CAS  PubMed  Google Scholar 

  67. Jasial S, Hu Y, Bajorath J (2017) How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J Med Chem 60(9):3879–3886. https://doi.org/10.1021/acs.jmedchem.7b00154

    Article  CAS  PubMed  Google Scholar 

  68. Bisson J, McAlpine J, Friesen J et al (2016) Can invalid bioactives undermine natural product-based drug discovery? J Med Chem 59(5):1671–1690. https://doi.org/10.1021/acs.jmedchem.5b01009

    Article  CAS  PubMed  Google Scholar 

  69. Rodrigues T, Reker D, Schneider P et al (2016) Counting on natural products for drug design. Nat Chem 8:531. https://doi.org/10.1038/nchem.2479

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Temml, V., Schuster, D. (2018). Computational Studies on Natural Products for the Development of Multi-target Drugs. In: Roy, K. (eds) Multi-Target Drug Design Using Chem-Bioinformatic Approaches. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2018_18

Download citation

  • DOI: https://doi.org/10.1007/7653_2018_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8732-0

  • Online ISBN: 978-1-4939-8733-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics