Skip to main content

The Watermelon Genome

  • Chapter
  • First Online:
Genetics and Genomics of Cucurbitaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 20))

Abstract

Watermelon grows throughout the world, and is one of the most important cucurbit crops. The draft genome sequence of the East-Asia watermelon cultivar ‘97103’ was published in 2013. The genome sequence allowed the prediction of 23,440 protein coding genes. Comparative genomics analysis showed that the 11 watermelon chromosomes are derived from a seven-chromosome paleohexaploid eudicot ancestor. Twenty watermelon accessions representing three different C. lanatus subspecies were re-sequenced, which produced numerous haplotypes and revealed the extent of genetic diversity and population structure of watermelon germplasm. Preferentially selected genomic regions were identified and several disease resistance genes were found to be lost during domestication. Integrative genomic and transcriptomic analyses identified genes critical to valuable fruit quality traits. The draft watermelon genome sequence represents an important resource for plant research and crop genetic improvement, and also support further evolutionary and comparative genomics studies of the Cucurbitaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Farault T, et al. Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci. 2010;15(9):479–87.

    Article  CAS  PubMed  Google Scholar 

  • Chomicki G, Renner SS. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol. 2015;205(2):526–32.

    Article  PubMed  Google Scholar 

  • Collins JK, Wu G, Perkins-Veazie P, Spears K, Claypool PL, Baker RA, et al. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition. 2007;23(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  • Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, et al. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009;9:90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson DL, Smith BD, Clarke AC, Sandweiss DH, Tuross N. An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc Natl Acad Sci U S A. 2005;102(51):18315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fursa TB. On the taxonomy of the genus Citrullus Schad. Bot Zh. 1972;57:31–4.

    Google Scholar 

  • Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, et al. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics. 2011;12(1):454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WG, Zhang H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G, et al. Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One. 2015;10(6), e0130267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris KR, Wechter WP, Levi A. Isolation, sequence analysis, and linkage mapping of nucleotide binding site–leucine-rich repeat disease resistance gene analogs in watermelon. J Am Soc Hortic Sci. 2009;134(6):649–57.

    Google Scholar 

  • Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N. Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics. 2002;160(1):313–22.

    PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Juliet PA, Matsui-Hirai H, Miyazaki A, Fukatsu A, Funami J, et al. l-citrulline and l-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits. Proc Natl Acad Sci U S A. 2005;102(38):13681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41(12):1275–81.

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–7.

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey C. Cucurbitaceae. In: Hanelt P, editor. Mansfeld’s encyclopedia of agricultural and horticultural crops. 3rd ed. Berlin: Springer; 2001. p. 1510–57.

    Google Scholar 

  • Ji G, Zhang J, Zhang H, Sun H, Gong G, Shi J, et al. Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4) led to andromonoecy in watermelon. J Integr Plant Biol. 2016. doi:10.1111/jipb.12466.

    Google Scholar 

  • Joobeur T, Gusmini G, Zhang X, Levi A, Xu Y, Wehner TC, et al. Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theor Appl Genet. 2006;112(8):1553–62.

    Article  CAS  PubMed  Google Scholar 

  • Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell. 2004;16(11):2870–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi A, Thomas CE, Wehner TC, Zhang X. Low genetic diversity indicated the need to broaden the genetic base of cultivated watermelon. HortScience. 2001;36:1096–101.

    CAS  Google Scholar 

  • Liu N, Yang J, Fu X, Zhang L, Tang K, Guy KM, et al. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Mol Genet Genomics. 2015;291:621–3.

    Article  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008;452(7190):991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrallah ME, Nasrallah JB. Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell. 1993;5:1325–35.

    PubMed  PubMed Central  Google Scholar 

  • Paris HS. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann Bot. 2015;116(2):133–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perkins-Veazie P, Collins JK, Davis AR, Roberts W. Carotenoid content of 50 watermelon cultivars. J Agric Food Chem. 2006;54(7):2593–7.

    Article  CAS  PubMed  Google Scholar 

  • Reddy UK, Nimmakayala P, Levi A, Abburi VL, Saminathan T, Tomason YR, et al. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3 (Bethesda). 2014;4(11):2219–30.

    Article  Google Scholar 

  • Reddy UK, Abburi L, Abburi VL, Saminathan T, Cantrell R, Vajja VG, et al. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered. 2015;106(2):166–76.

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One. 2012;7(1), e29453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Jiao D, Gong G, Zhang H, Guo S, Zhang J, et al. Genetic analysis and chromosome mapping of resistance to f. sp. (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.). Mol Breed. 2015;35(9):183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Renner SS, Chomicki G, Greuter W. (2313) Proposal to conserve the name Momordica lanata (Citrullus lanatus) (watermelon, Cucurbitaceae), with a conserved type, against Citrullus battich. Taxon. 2014;63(4):941–2.

    Article  Google Scholar 

  • Rhee SJ, Seo M, Jang YJ, Cho S, Lee GP. Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics. 2015;16:914.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salse J. In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. Curr Opin Plant Biol. 2012;15:122–30.

    Article  CAS  PubMed  Google Scholar 

  • Saminathan T, Nimmakayala P, Manohar S, Malkaram S, Almeida A, Cantrell R, et al. Differential gene expression and alternative splicing between diploid and tetraploid watermelon. J Exp Bot. 2015;66(5):1369–85.

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5.

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Li D, Dai Y, Liu S, Huang L, Hong Y, et al. Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus). BMC Plant Biol. 2015;15(1):298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet. 2010;42(10):833–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hu H, Goertzen LR, McElroy JS, Dane F. Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS One. 2014;9(8), e104657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wechter WP, Levi A, Harris KR, Davis AR, Fei Z, Katzir N, et al. Gene expression in developing watermelon fruit. BMC Genomics. 2008;9:275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 2002;296(5565):79–92.

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Huang X, Bao Y, Wang B, Liu L, Dai L, et al. Genome-wide identification and expression profiling of WUSCHEL-related homeobox (WOX) genes during adventitious shoot regeneration of watermelon (Citrullus lanatus). Acta Physiol Plant. 2015;37(11):224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yong, X., Guo, S. (2016). The Watermelon Genome. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. https://doi.org/10.1007/7397_2016_22

Download citation

Publish with us

Policies and ethics