Skip to main content

Genetic Resources of Cucumber

  • Chapter
  • First Online:
Book cover Genetics and Genomics of Cucurbitaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 20))

Abstract

The Cucurbitaceae is a monophyletic family without any close relatives. It includes important vegetables such as cucumber, melon, watermelon, squash, pumpkin, and gourd. Within Cucurbitaceae, the genus Cucumis includes cultivated species C. sativus (cucumber) and C. melo (melon), as well as wild species including C. hystrix, C. callosus, and C. sativus L. var. hardwickii. More than 50 species have been identified in Cucumis with high levels of phenotypic and genetic diversity found in centers of diversity in Africa, Asia, and India. Primary and secondary centers of diversity can serve as useful sources of variation, and have been widely used to incorporate traits such as disease resistance into cultivated materials. During domestication, cucumber and melon underwent severe bottlenecks, which resulted in low genetic variation despite high phenotypic diversity. Since its domestication, approximately 3000 years ago, cucumber has undergone significant morphological changes from its small-fruited, black spined, seedy progenitor. More than 150 single gene traits have been described in C. sativus, including powdery mildew and virus resistance, sex expression, leaf morphology, and parthenocarpy, and molecular markers continue to be rapidly developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aalders LE. ‘Yellow Cotyledon’, a new cucumber mutation. Can J Cytol. 1959;1:10–2.

    Article  Google Scholar 

  • Abul-Hayja Z, Williams PH. Inheritance of two seedling markers in cucumber. HortScience. 1976;11:145.

    Google Scholar 

  • Amano M, Machizuki A, Kawagoe Y, Iwahori K, Niwa K, Svoboda J, et al. High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theor Appl Genet. 2013;126:2983–93.

    Article  CAS  PubMed  Google Scholar 

  • Andeweg JM, DeBruyn JW. Breeding non-bitter cucumbers. Euphytica. 1959;8:13–20.

    Article  Google Scholar 

  • Ando K, Grumet R. Evaluation of altered cucumber plant architecture as a means to reduce Phytophthora capsici disease incidence in cucumber fruit. J Am Soc Hortic Sci. 2006;131:491–8.

    Google Scholar 

  • Anonymous. New vegetable varieties list IV. Proc Am Soc Hortic Sci. 1957;69:57487.

    Google Scholar 

  • Aydemir I. Determination of genetic diversity in cucumber (Cucumis sativus L.) germplasms. Graduate School of Engineering and Sciences of Izmir Institute of Technology. Thesis. 2009.

    Google Scholar 

  • Bai ZL, Yuan XJ, Cai R, Liu LZ, He HL, Zhou HF, Pan JS. QTL analysis of downy mildew resistance in cucumber. Prog Nat Sci. 2008;18:706–10.

    CAS  Google Scholar 

  • Behera TK, Staub JE, Delannay IY, Chen JF. Marker-assisted backcross selection in an interspecific Cucumis population broadens the genetic base of cucumber (Cucumis sativus L.). Euphytica. 2011;178:261–72.

    Article  Google Scholar 

  • Bhawna MZ, Abdin LA, Verma M. Transferability of cucumber microsatellite markers used for phylogenetic analysis and population structure study in bottle gourd (Lagenaria siceraria (Mol.) Standl.). Appl Biochem Biotechnol. 2015;175:2206–23.

    Article  CAS  PubMed  Google Scholar 

  • Block C, Reitsma KR. Powdery mildew resistance in the US National Plant Germplasm system cucumber collection. HortScience. 2005;40:416–20.

    ADS  Google Scholar 

  • Bo K, Song H, Shen J, Qian C, Staub JE, Simon PW, et al. Inheritance and mapping of the ore gene controlling the quantity of B-carotene in cucumber (Cucumis sativus L.) endocarp. Mol Breed. 2012;30:335–44.

    Article  CAS  Google Scholar 

  • Boswell VR. Our vegetable travelers. Natl Geogr. 1949;61(2):145–217.

    Google Scholar 

  • Burnham M, Phatak SC, Peterson CE. Graft-aided inheritance study of a chlorophyll deficient cucumber. Proc Am Soc Hortic Sci. 1966;89:386–9.

    Google Scholar 

  • Call AD, Criswell AD, Wehner TC, Klosinska U, Kozik EU. Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostov. Crop Sci. 2012;52:577–92.

    CAS  Google Scholar 

  • Carlsson G. Studies of blind top shoot and its effect on the yield of greenhouse cucumbers. Acta Agric Scand. 1961;11:160–2.

    Article  Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y. Genome-wide Characterization of simple sequence repeats in cucumber(Cucumis Sativus L.) BMC Genomics. 2010;11:569.

    Google Scholar 

  • Chen JF, Kirkbride Jr JH. A new synthetic species (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia. 2000;52:315–19.

    Article  Google Scholar 

  • Chen JF, Isshiki S, Tashiro Y, Miyazaki S. Studies on a wild cucumber from China (Cucumis hystrix Chakr.). I. Genetic distance between C. hystrix and two cultivated Cucumis species (C. sativus L. and C. melo L.) based on isozyme analysis. J Jpn Soc Hortic Sci. 1995;64 suppl 2:264–5.

    Google Scholar 

  • Chen JF, Staub JE, Tashiro Y, Isshiki S, Miyazaki S. Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica. 1997;96:413–19.

    Article  Google Scholar 

  • Chen J, Adelberg JW, Staub JE, Skorupska HT, Rhodes BB. A new synthetic amphidiploid in Cucumis from C. sativus x C. hytrix F1 interspecific hybrid. Cucurbit Genet Coop Rep. 1998;21:336–9.

    CAS  Google Scholar 

  • Chen J, Staub J, Qian C, Jiang J, Luo X, Zhuang F. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. x Cucumis sativus L. Theor Appl Genet. 2003;106:688–95.

    Article  CAS  PubMed  Google Scholar 

  • Chung SM, Staub JE, Chen JF. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome. 2006;49:219–29.

    Article  CAS  PubMed  Google Scholar 

  • Chung SM, Gordon VS, Staub JE. Sequencing of cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling tolerant and susceptible lines. Genome. 2007;50:215–25.

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Gertman E, Kedar N. Inheritance of resistance to melon mosaic virus in cucumbers. Phytopathology. 1971;61:253–5.

    Article  Google Scholar 

  • Colle M, Straley EN, Makela SB, Hammar SA, Grumet R. Screening the cucumber plant introduction collection for young fruit resistance to Phytophthora capsici. HortScience. 2014;49:244–9.

    Google Scholar 

  • Cramer CS, Wehner TC. Little heterosis for yield and yield components in hybrids of six cucumber inbreds. Euphytica. 1999;110:99–108.

    Article  Google Scholar 

  • Criswell AD, Call AD, Wehner TC. Genetic control of downy mildew resistance in cucumber – a review. Cucurbit Genet Coop Rep. 2010;33–34:13–6.

    Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, Song H. Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit. Euphytica. 2010;171:301–11.

    Article  CAS  Google Scholar 

  • Dane F, Denna DW, Tsuchiya T. Evolutionary studies of wild species in the genus Cucumis. Z Pflanzenzucht. 1980;85:89–109.

    Google Scholar 

  • de Ruiter AC, van der Knapp BJ, Robinson RW. Rosette, a spontaneous cucumber mutant arising from cucumber-muskmelon pollen. Cucurbit Genet Coop Rep. 1980;3:4.

    Google Scholar 

  • Delannay IY, Staub JE. Use of molecular markers aids in the development of diverse inbred backcross lines in Beit Alpha cucumber (Cucumis sativus L.). Euphytica. 2010;175:65–78.

    Article  CAS  Google Scholar 

  • den Nijs APM, Boukema IW. Short petiole, a useful seedling marker for genetic studies in cucumber. Cucumber Genet Coop Rep. 1985;8:7–8.

    Google Scholar 

  • den Nijs APM, de Ponti OMB. Umbrella leaf: a gene for sensitivity to low humidity in cucumber. Cucumber Genet Coop Rep. 1983;6:24.

    Google Scholar 

  • den Nijs APM, Mackiewicz HO. “Divided leaf”, a recessive seedling marker in cucumber. Cucurbit Genet Coop Rep. 1980;3:24.

    Google Scholar 

  • Denna DW. Expression of determinate habit in cucumbers. J Am Soc Hortic Sci. 1971;96:277–9.

    Google Scholar 

  • Ding GH, Qin ZW, Zhou XY, Fan JX. RAPD and SCAR markers for downy mildew resistance in cucumber. Acta Botan Boreali Occiden Sin. 2007;27:1747.

    CAS  Google Scholar 

  • Dong SY, Miao H, Zhang SP, et al. Genetic analysis and mapping of white fruit skin color in cucumber. Acta Botan Boreali Occiden Sin. 2012;32:2177–81.

    CAS  Google Scholar 

  • Fan Z, Robbins MD, Staub JE. Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber (Cucumis sativus L.). Theor Appl Genet. 2006;112:843–55.

    Article  CAS  PubMed  Google Scholar 

  • Favrin RJ, Rahe JE, Mauza B. Pythium spp. associated with crown rot of cucumbers in British Colombia greenhouses. Plant Dis. 1988;72:683–7.

    Article  Google Scholar 

  • Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet. 2003;107:864–74.

    Article  CAS  PubMed  Google Scholar 

  • Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S. Identification and validation of powdery mildew (Podosphaera xanthii)-resistance loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed. 2013;32:267–77.

    Article  CAS  Google Scholar 

  • George Jr WL. Genetic and environmental modification of determinant plant habit in cucumbers. J Am Soc Hortic Sci. 1970;95:583–6.

    Google Scholar 

  • Gevens AJ, Ando K, Lamour KH, Grumet R, Hausbeck MK. A detached cucumber fruit method to screen for resistance to Phytophthora capsici and effect of fruit age on susceptibility to infection. Plant Dis. 2006;90:1276–82.

    Article  Google Scholar 

  • Goode MJ, Bowers JL, Bassi Jr A. Little-leaf, a new kind of pickling cucumber plant. Ark Farm Res. 1980;29:4.

    Google Scholar 

  • Gordon VS, Staub JE. Comparative analysis of chilling response in cucumber (Cucumis sativus L.) through plastidic and nuclear genetic component analysis. J Am Soc Hortic Sci. 2011;136:256–64.

    Google Scholar 

  • Gornitskaya IP. A spontaneous mutant of cucumber variety Nezhinskii 12. Genetika. 1967;3(11):169.

    Google Scholar 

  • Granado F, Olmedilla B, Blanco I. Nutritional and clinical relevance of lutein in human health. Br J Nutr. 2003;90:487–502.

    Article  CAS  PubMed  Google Scholar 

  • Grumet R, Kabelka E, McQueen S, Wai T. Humphrey Characterization of sources of resistance to the watermelon strain of papaya ringspot virus in cucumber: allelism and co-segregation with other potyvirus resistances. Theor Appl Genet. 2000;101:463–72.

    Article  Google Scholar 

  • Guin-Aragones C, Monforte AJ, Saladie M, Correa RX, Garcia-Mas J, Martin-Hernandez AM. The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Mol Breed. 2014;34:351–62.

    Article  CAS  Google Scholar 

  • Harlan JR. Crops and man. Madison: American Society of Agronomy; 1975.

    Google Scholar 

  • Hausbeck MK, Lamour KH. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 2004;88:1292–303.

    Article  Google Scholar 

  • He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2013;126:2149–61.

    Article  CAS  PubMed  Google Scholar 

  • Hedrick UP. Sturtevant’s notes on edible plants. Albany: J. B. Lyon Co.; 1919.

    Google Scholar 

  • Horejsi T, Staub JE. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol. 1999;46:337–50.

    Article  Google Scholar 

  • Horst EK, Lower RL. Cucumis hardwickii: a source of germ-plasm for the cucumber breeder. Cucurbit Genetics Coop Rep. 1978;1:5.

    Google Scholar 

  • Hutchins AE. Inheritance in the cucumber. J Agric Res. 1940;60:117–28.

    Google Scholar 

  • Inggamer H, de Ponti OMB. The identity of genes for glabrousness in Cucumis sativus L. Cucurbit Genet Coop Rep. 1980;3:14.

    Google Scholar 

  • Innark P, Khanobdee C, Samipak S, Jantasuriyarat C. Evaluation of genetic diversity in cucumber (Cucumis sativus L.) germplasm using agro-economic traits and microsatellite markers. Sci Hortic. 2013;162:278–84.

    Article  CAS  Google Scholar 

  • Jeffrey C. A review of the Cucurbitaceae. Bot J Linnean Soc. 1980;81:233–47.

    Article  Google Scholar 

  • Jiang S, Yan XJ, et al. Quantitative trait locus analysis of lateral branch-related traits in cucumber using recombinant inbred lines. Sci China Ser C Life Sci. 2008;51:833–41.

    Article  CAS  Google Scholar 

  • John CA, Wilson JD. A “ginko leafed” mutation in the cucumber. J Hered. 1952;43:47–8.

    Article  Google Scholar 

  • Kacar YA, Simsek O, Solmaz I, Sari N, Mendi YY. Genetic diversity among melon accessions (Cucumis melo) from Turkey based on SSR markers. Genet Mol Res. 2012;11:4622–31.

    Article  CAS  PubMed  Google Scholar 

  • Kauffman CS, Lower RL. Inheritance of an extreme dwarf plant type in the cucumber. J Am Soc Hortic Sci. 1976;101:150–1.

    Google Scholar 

  • Kerje T, Grum M. Origin of melon, Cucumis melo: a review of the literature. Acta Hortic. 2000;510:37–44.

    Article  Google Scholar 

  • Kozik EU, Wehner TC. A single dominant gene Ch for chilling resistance in cucumber seedlings. J Am Soc Hortic Sci. 2008;133:225–7.

    Google Scholar 

  • Kozik EU, Wehner TC. Inheritance of chilling resistance in cucumber seedlings. In: Holmes GJ, editor. Proceedings of the Cucurbitaceae. Universal Press, Raleigh, North Carolina; 2006. p. 121–4.

    Google Scholar 

  • Kubicki B. Investigations of sex determination in cucumber (Cucumis sativus L.). IV. Multiple alleles of locus Acr. Genetica Polonica. 1969;10:23–68.

    Google Scholar 

  • Lebeda A, Křistková E, Kubaláková M. Interspecific hybridization of Cucumis sativus × Cucumis melo as a potential way to transfer resistance to Pseudoperonospora cubensis. In: Gómez-Guillamón ML, Soria C, Cuartero J, Torès JA, Fernandez-Munoz R, editors. Cucurbits towards 2000. Proceedings of the VI Eucarpia meeting on cucurbit genetics and breeding, Málaga; 1996, p. 31–7.

    Google Scholar 

  • Li Y, Wen C, Weng Y. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet. 2010;126:2187–96.

    Google Scholar 

  • Li YH, Yang LM, et al. Fine genetic mapping of cp, a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet. 2011;123:973–83.

    Article  PubMed  Google Scholar 

  • Lower RL, Edwards MD. Cucumber breeding. In: Basset MJ, editor. Breeding vegetables crops. Westport: AVI Publishing Co; 1986. p. 173–203.

    Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet. 2014;127:1491–9.

    Article  PubMed  Google Scholar 

  • Lu HW, Miao H, Tian GL, Wehner TC, Gu XF, Zhange SP. Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Mol Breed. 2015;25:64.

    Article  CAS  Google Scholar 

  • Lv J, Qi J, Shi Q, Shen D, Zhang S, Shao G, et al. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One. 2012. doi:10.1371/journal.pone.0046919.

    Google Scholar 

  • Maio H, Zhang S, Wang X, Zhang Z, Li M, Mu S, Cheng Z, Zhang R, Huang S, Xie B, Fang Z, Zhang Z, Weng Y, Gu X. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2011;182:167–76.

    Article  Google Scholar 

  • McCreight JD, Staub JE, Wehner TC, Dhillon NPS. Gone global: familiar and exotic cucurbits have Asian origins. HortScience. 2013;48:1078–89.

    Google Scholar 

  • Meeuse ADJ. The possible origin of Cucumis anguria L. Pretoria: National Herbarium; 1958.

    Google Scholar 

  • Meglic V, Serquen F, Staub JE. Genetic diversity in cucumber (Cucumis sativus L.): I. A reevaluation of the U.S. germplasm collection. Genet Res Crop Evol. 1996;43:533–46.

    Article  Google Scholar 

  • Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Fang ZY. Mapping QTLs for seedling-associated traits in cucumber. Acta Hortic Sin. 2012;39:879–87.

    CAS  Google Scholar 

  • Miller GA, George Jr WL. Inheritance of dwarf determinate growth habits in cucumber. J Am Soc Hortic Sci. 1979;104:114–17.

    Google Scholar 

  • Munshi AD, Panda B, Behera TK, Kumar R. Genetic variability in Cucumis sativus var. hardwickii R. (Alef.) germplasm. Cucurbit Genet Coop Rep. 2007;30:5–10.

    Google Scholar 

  • Naudin MC. Essais d’une monographie des especes et des varietes du genie Cucumis. Ann Sci Nat Ser. 1859;4(11):5–87.

    Google Scholar 

  • Nazavari K, Jamli F, Odland ML, Groff DW. Inheritance of crinkled-leaf cucumber. Proc Am Soc Hortic Sci. 1963;83:536–7.

    Google Scholar 

  • Nazavari K, Jamali F, Bayat F, Modarresi M. Evaluation of resistance to seedling damping-off caused by Phytophthora drechsleri in cucumber cultivars under greenhouse conditions. Biol Forum. 2016;8:54–60.

    Google Scholar 

  • Odland ML, Groff DW. Inheritance of crinkled-leaf cucumber. Proc Am Soc Hortic Sci. 1963;83:536–7.

    Google Scholar 

  • Olczak-Woltman H, Bartoszewski G, Madry W, Niemirowicz-Szczytt K. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv. Lachrymans) in cucumber and identification of molecular markers linked to resistance. Plant Pathol. 2009;58:145–51.

    Article  Google Scholar 

  • Olczak-Wotman H, Marcinkowska J, Niemirowicz-Szczytt K. The genetic basis of resistance to downy mildew in Cucumis spp – latest developments and prospects. J Appl Genet. 2011;52:249–55.

    Google Scholar 

  • Pan Y, Bo K, Cheng Z, Weng F. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol. 2015;15:302.

    Google Scholar 

  • Pandey S, Ansari WA, Mishra VK, Singh AK, Singh M. Genetic diversity in Indian cucumber based on microsatellite and morphological markers. Biochem Syst Ecol. 2013;51:19–27.

    Article  CAS  Google Scholar 

  • Pang X, Zhou X, Qan H, Chen J. QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol. 2013;161:536–43.

    Article  Google Scholar 

  • Perchepied L, Bardin M, Dogimont C, Pitrat M. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology. 2005;95:556–65.

    Article  CAS  PubMed  Google Scholar 

  • Perry A, Rasmussen H, Johnson EJ. Xanthophyll (lutein, xeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compos Anal. 2009;22:9–15.

    Article  CAS  Google Scholar 

  • Peterson CE. A gynoecious inbred line of cucumber. Mich Agric Exp Sta Q Bul. 1960;43:40–2.

    Google Scholar 

  • Pierce LK, Wehner TC. Review of genes and linkage groups in cucumber. HortScience. 1990;25:605–15.

    CAS  Google Scholar 

  • Pike LM, Peterson CE. Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica. 1969;18:101–5.

    Google Scholar 

  • Poole CF. Genetics of cultivated cucurbits. J Hered. 1944;35:122–8.

    Article  Google Scholar 

  • Porter RH. Reaction of Chinese cucumbers to mosaic. Phytopathology. 1929;19:85.

    Google Scholar 

  • Provvidenti R. Inheritance of resistance to a strain of zucchini yellow mosaic virus in cucumber. HortScience. 1987;22:102–3.

    Google Scholar 

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45:1510–15.

    Article  CAS  PubMed  Google Scholar 

  • Ranjan KN, Rai AB, Rai M. Export of cucumber and gherkin from India: performance, destinations, competitiveness, and determinants. Agric Econ Res Rev. 2008;21:130–8.

    Google Scholar 

  • Renner SS, Schaefer H, Kocyan A. Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol Biol. 2007;7:PMC2335884.

    Google Scholar 

  • Robbins MD, Staub JE. Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet. 2009;119:621–34.

    Article  PubMed  Google Scholar 

  • Robinson RW. Blunt leaf apex, a cucumber mutant induced by a chemical mutagen. Cucurbit Genet Coop Rep. 1987a;10:6.

    CAS  Google Scholar 

  • Robinson RW. Cordate, a leaf shape gene with pleiotropic effects on flower structure and insect pollination. Cucurbit Genet Coop Rep. 1987b;10:8.

    Google Scholar 

  • Robinson RW. Inheritance of opposite leaf arrangement in Cucumis sativus L. Cucurbit Genet Coop Rep. 1987c;10:10.

    Google Scholar 

  • Robinson RW. Origin and characterization of the ‘Lemon’ cucumber. Cucurbit Genet Coop Rep. 2010;33–34:3–4.

    Google Scholar 

  • Robinson RW, Mishanec W. A radiation-induced seedling marker gene for cucumbers. Veg Imp Newsl. 1964;6:2.

    Google Scholar 

  • Robinson RW, Mishanec W. A new dwarf cucumber. Veg Imp Newsl. 1965;7:23.

    Google Scholar 

  • Robinson RW, Mishanec W. Male sterility in the cucumber. Veg Imp Newsl. 1967;9:2.

    Google Scholar 

  • Robinson RW, Shail JW. A cucumber mutant with increased hypocotyl and internode length. Cucurbit Genet Coop Rep. 1981;4:19–20.

    Google Scholar 

  • Rose S, Punja ZK. Greenhouse cucumber cultivars differ in susceptibility to Fusarium root and stem rot. HortTechnology. 2004;14:240–2.

    Google Scholar 

  • Rowe JT, Bowers JL. The inheritance and potential of an irradiation induced tendrilless character in cucumbers. Proc Am Soc Hortic Sci. 1965;86:436–41.

    Google Scholar 

  • Sakata Y, Kubo N, Morishita M, Kitadami E, Sugiyama M, Hirai M. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet. 2006;112:243–50.

    Article  CAS  PubMed  Google Scholar 

  • Schultheis J. Fresh market production cucumbers. NC Coop Ext NC State Univ Hortic Info Lflt. 2000.

    Google Scholar 

  • Schultheis JR, Wehner TC, Walters SA. Optimum planting density and harvest stage for little-leaf and normal-leaf cucumbers for once-over harvest. Can J Plant Sci. 1998;78:333–40.

    Article  Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner S. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107:14269–73.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugasundarum S, Williams PH. A cotyledon marker gene in cucumbers. Veg Imp Newsl. 1971;13:4.

    Google Scholar 

  • Shanmugasundarum S, Williams PH, Peterson CE. A recessive cotyledon marker gene in cucumber with pleiotropic effects. HortScience. 1972;7:555–6.

    Google Scholar 

  • Shetty NV, Wehner TC. Screening the cucumber germplasm collection for fruit yield and quality. Crop Sci. 2001;42:2174–83.

    Article  Google Scholar 

  • Sikdar B, Bhattacharya M, Mukherjee A, Banerjee A, Ghosh E, Ghosh B, et al. Genetic diversity in important members of the Cucurbitaceae using isozyme, RAPD, and ISSR markers. Biologia Plantarum. 2010;54:135–40.

    Article  CAS  Google Scholar 

  • St. Amand PC, Wehner TC. Crop loss to 14 diseases in cucumber in the North Carolina for 1983 to 1988. Cucurbit Genet Coop Rep. 1991;14:15–7.

    Google Scholar 

  • Staub JE, Bacher J. Cucumber as a processed vegetable. In: Smith DS, Cash JN, Nip WK, Hui YH, editors. Processing vegetables: science and technology IV. Lancaster: Technomic Publishing Co., Inc.; 1997. p. 129–93.

    Google Scholar 

  • Staub JE, Delannay IY. USDA, ARS European long greenhouse cucumber inbred backcross line population. HortScience. 2011;46:1317–20.

    Google Scholar 

  • Staub JE, Kupper RS. Use of Cucumis sativus var. hardwickii germplasm in backcrosses with Cucumis sativus var. sativus. Hortscience. 1985;20:436–8.

    Google Scholar 

  • Staub JE, Peterson CE, Cruaugh LK, Palmer MJ. Cucumber population WI 6383 and derived inbreds WI 5098 and WI 5551. HortScience. 1992;27:1340–1.

    Google Scholar 

  • Staub JE, Serquen FC, McCreight JD. Genetic diversity in cucumber (Cucumis sativus L.): III. An evaluation of Indian germplasm. Genet Resour Crop Evol. 1997a;44:315–26.

    Article  Google Scholar 

  • Staub JE, Knerr LD, Holder DJ, May B. Phylogenetic relationships among several African Cucumis species. Can J Bot. 1997b;70:509–17.

    Article  Google Scholar 

  • Staub JE, Box J, Meglic V, Horejsi TF, McCreight JD. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet Res Crop Evol. 1997c;44:257–69.

    Article  Google Scholar 

  • Staub JE, Serquen FC, Horejsi T, Chen J. Genetic diversity in cucumber (Cucumis sativus L.): IV. An evaluation of Chinese germplasm. Genet Resour Crop Evol. 1999;46:297–310.

    Article  Google Scholar 

  • Staub JE, Robbins MD, Lopez-Sese AI. Molecular methodologies for improved genetic diversity assessment in cucumber and melon. Proc. 26th IRC, Horticulture: art and science for life advances in vegetable breeding. Acta Hortic. 2002;642:41–7.

    Google Scholar 

  • Staub JE, Robbins MD, Wehner TC. Cucumber. In: Prohens J, Nuez F, editors. Handbook of plant breeding; Vegetables I: asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae. New York: Springer; 2008. p. 241–82.

    Google Scholar 

  • Staub JE, Simon PW, Cuevas HE. USDA, ARS EOM 402–10 high beta-carotene cucumber. HortScience. 2011;46:1426–7.

    CAS  Google Scholar 

  • Sturtevant EL. History of garden vegetables. Am Nat. 1887;21:903–12.

    Article  Google Scholar 

  • Sun Z, Lower RL, Staub JE. Variance component analysis of parthenocarpy in elite U.S. processing type cucumber (Cucumis sativus L.) lines. Euphytica. 2006a;148:331–9.

    Article  Google Scholar 

  • Sun Z, Lower RL, Staub JE. Analysis of generation means and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant Breed. 2006b;125:277–80.

    Article  Google Scholar 

  • Szczechura W, Staniaskzek M, Klosinska U, Kozik EU. Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et. Curt.) Rostovzev in cucumber. Russ J Genet. 2015;51:974–9.

    Article  CAS  Google Scholar 

  • Tapley WT, Enzie WD, van Eseltine GP. The vegetables of New York. IV. The cucurbits. Report of the New York Agricultural Experimental Station. Albany: J. B. Lyon Co.; 1937.

    Google Scholar 

  • Tian G, Yang Y, Zhang S, Miao H, Lu H, Wang Y, Xie B, Gu X. Genetic analysis and gene mapping of papaya ring spot virus resistance in cucumber. Mol Breed. 2015;35:110.

    Article  CAS  Google Scholar 

  • Tkachenko NN. Preliminary results of a genetic investigation of the cucumber, Cucumis sativus L. Bul Appl Plant Breed Ser. 1935;2(9):311–56.

    Google Scholar 

  • Uchneat MS, Wehner TC. Resistance to belly rot in cucumber identified through field and detached-fruit evaluations. J Am Soc Hortic Sci. 1998;123:78–84.

    Google Scholar 

  • van Vliet GJA, Meysing WD. Inheritance of resistance to Pseudoperonospora cubensis Rost. in cucumber (Cucumis sativus L.). Euphytica. 1974;23:251–5.

    Article  Google Scholar 

  • van Vliet GJA, Meysing WD. Relation in the inheritance of resistance to Pseudoperonospora cubensis Rost. and Sphaerotheca fuliginea Poll. in cucumber (Cucumis sativus L.). Euphytica. 1977;26:793–6.

    Article  Google Scholar 

  • Vavilov NI. Studies on the origin of cultivated plants. Leningrad: Institute of Applied Botany and Plant Breeding; 1926.

    Google Scholar 

  • Vavilov NI. The origin, variation, immunity and breeding of cultivated plants. Chron Bot. 1951;13:13–54.

    Google Scholar 

  • Wai T, Staub JE, Kabelka E, Grumet R. Linkage analysis of potyvirus resistance alleles in cucumber. J Hered. 1997;88:454–8.

    Article  Google Scholar 

  • Walters SA, Wehner TC, Barker KR. NC-42 and NC-43: root-knot nematode-resistant cucumber germplasm. HortScience. 1996;31:1246–7.

    Google Scholar 

  • Wang YJ, Provvidenti R, Robinson RW. Inheritance of resistance in cucumber to watermelon mosaic virus. Phytopathology. 1984;51:423–8.

    Google Scholar 

  • Wehner TC. In: Janick J, editor. Plant breeding reviews: breeding for improved yield in cucumber. vol 6. JohnWiley & sons, Inc. Hoboken, NJ, USA; 1989, pp. 352–3.

    Google Scholar 

  • Wehner TC, Cramer CS. Ten cycles of recurrent selection for fruit yield, earliness, and quality in three slicing cucumber populations. J Am Soc Hortic Sci. 1996;121:362–6.

    Google Scholar 

  • Wehner TC, Staub JE, Peterson CE. Inheritance of littleleaf and multi-branched plant type in cucumber. Cucurbit Genet Coop Rep. 1987;10:33.

    Google Scholar 

  • Wehner TC, Shetty NV, Sloane JT. Field and detached-fruit screening tests for resistance to belly rot in cucumber. HortScience. 2004;38:149–52.

    Google Scholar 

  • Weng Y. Genetic diversity among Cucumis metuliferus populations revealed by cucumber satellites. HortScience. 2010;45:214–19.

    Google Scholar 

  • Weng Y. Molecular tagged genes and quantitative trait loci in cucumber. Cucurbitaceae Proc Am Soc Hortic Sci. 2014;48:53.

    Google Scholar 

  • Whelan EDP. Golden cotyledon: a radiation-induced mutant in cucumber. HortScience. 1971;6:343 (abstract).

    Google Scholar 

  • Whelan EDP. A cytogenic study of a radiation-induced male sterile mutant of cucumber. J Am Soc Hortic Sci. 1972;97:506–9.

    Google Scholar 

  • Whelan EDP. Inheritance and linkage relationship of two radiation-induced seedling mutants of cucumber. Can J Genet Cytol. 1973;15:597–603.

    Article  Google Scholar 

  • Whelan ED, Chubey BB. Chlorophyll content of new cotyledon mutants of cucumber. HortScience. 1973;10:267–9.

    Google Scholar 

  • Whelan EDP, Williams PH, Abul-Hayja A. The inheritance of two induced cotyledon mutants of cucumber. HortScience. 1975;10:267–9.

    Google Scholar 

  • Win KT, Zhang C, Song K, Lee JH, Lee S. Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.). Mol Breed. 2015;35:229.

    Article  CAS  Google Scholar 

  • Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, Xu Q, Qi X, Chen X. A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front Plant Sci. 2014;5:PMC4285734.

    Google Scholar 

  • Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X. QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep. 2015;5:15829.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Miao SP, Zhang Z, Cheng Z, Dong S, Wehner TC, Gu SF. Genetic analysis and mapping of gl-2 gene in cucumber. Acta Hortic Sin. 2011;38:1685–92.

    CAS  Google Scholar 

  • Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, et al. Chromosome rearrangements during domestication as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012;71:895–906.

    Article  CAS  PubMed  Google Scholar 

  • Yang LM, et al. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol. 2013;13:553.

    Google Scholar 

  • Yang X, Li Y, Zhang W, He H, Pan J, Cai R. Fine mapping of the uniform immature fruit color gene u in cucumber (Cucumis sativus L.). Euphytica. 2014;196:341–8.

    Article  CAS  Google Scholar 

  • Zhang W, Huanle H, Guan Y, Du H, Yuan L, Li Z, et al. Identification and mapping of molecular markers linked to the tuberculate fruit gene in cucumber (Cucumis sativus L.). Theor Appl Genet. 2010;120:645–54.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Pratap AS, Natarajan S, Pugalenhdhi L, Kikuchi S, Sassa H, Senthil N, Koba T. Evaluation of morphological and molecular diversity among South Asian germplasms of Cucumis sativus and C. melo. ISRN Agron. 2012a;134134.

    Google Scholar 

  • Zhang S, Miao H, Sun R, Wang X, Huang S, Wehner TC, Gu X. Localization of a new gene for bitterness in cucumber. J Heredity. 2012b;104:134–9.

    Article  CAS  Google Scholar 

  • Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, et al. Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis. 2013;97:245–51.

    Article  CAS  Google Scholar 

  • Zhang SP, Miao H, Yang YH, Xie BY, Wang Y, Gu XF. A major quantitative trait locus conferring resistance to Fusarium wilt was detected in cucumber by using recombinant inbred lines. Mol Breed. 2014;34:1805–15.

    Article  CAS  Google Scholar 

  • Zitter TA. Vegetable MD Online: Fusarium diseases of cucurbits. Fact Sheet 733. 1998. http://vegetablemdonline.ppath.cornell.edu/factsheets/Cucurbits_Fusarium.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel P. Naegele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naegele, R.P., Wehner, T.C. (2016). Genetic Resources of Cucumber. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. https://doi.org/10.1007/7397_2016_15

Download citation

Publish with us

Policies and ethics