Skip to main content

Fruit Ripening in Melon

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 20))

Abstract

Ripening is a highly programmed developmental process that confers economically important properties to fruit. Although the key roles of the phytohormone ethylene and related transcription factors have been well studied in the regulation of fruit ripening in the model fruit, tomato, melon (Cucumis melo L.) is also recognized as an attractive alternative model because of the co-existence of climacteric and non-climacteric types, as well as the availability of the whole genome sequence and other rich genetic resources. In climacteric melon, genetic evidence demonstrates that ripening-associated biochemical changes are brought about by both ethylene-dependent and -independent pathways. Recently, genome, transcriptome, metabolite, and systems biology studies that have employed high-throughput analytical technologies have further investigated the molecular basis of fruit ripening in melon. This chapter is intended to combine the previous and current knowledge about melon fruit ripening with a main focus on molecular mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1-MCP:

1-methylcyclopropene

a:

Andromonoecious

ACC:

1-aminocyclopropane-1-1carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthase

Al:

Abscission layer

AP2a:

APETALA2 transcription factor APETALA2a

ATH:

N-Acetyltransferase hookless

AuxRD:

Auxin-responsive element

BSR-seq:

Bulked segregant RNA-seq

CDPK:

Calcium-dependent protein kinase

Cnr:

Colorless non-ripening

CRT:

C-repeat

CRTISO:

Carotenoid isomerase

CTR:

Constitutive ethylene response

DEG:

Differentially expressed gene

DMR:

DEMETER-like DNA demethylase

DRE:

Dehydration responsive element

DREB:

DRE binding factor

EIN:

Ethylene insensitive 3

EMS:

Ethylmethane-sulfonate

EREBP:

Ethylene-responsive element binding protein

ERF:

Ethylene Responsive Factor

ETR:

Ethylene-resistant

FUL:

Fruitfulll

g:

Gynoecious

gf:

Green flesh

Gr:

Green-ripe

NIL:

Near-isogenic line

nor:

Non-ripening

Nr:

Never-ripe

pg2a:

Polygalacturonase2a

PSY:

Phytoene synthase

LG:

Linkage group

Or:

Orange

PDS:

Phytoene desaturase

PSY:

Phytoene synthase

QTL:

Quantitative trait locus

RIL:

Recombinant inbred line

rin:

Ripening-inhibitor

RTE:

Reversion to ethylene sensitivity

S-AdoMet:

S-adenosyl-l-methionine

SAMase:

S-AdoMet hydrolase

SBP:

Squamosa-promoter binding protein

SEP:

Sepallata

SGR:

Stay-green

SNP:

Single nucleotide polymorphism

TAGL:

Tomato agamous-like

TCA:

Tricarboxylic acid

TD-GC-MS:

Thermal desorption gas chromatography mass spectrometry

TILLING:

Targeting induced local lesion in genomes

UFGC–SAW:

Ultra-fast gaschromatograph coupled with a surface acoustic wave sensor

wf:

White flesh

ZDS:

ζ-carotene desaturase

Z-ISO:

ζ-carotene isomerase

References

  • Abeles FB, Takeda F. Cellulase activity and ethylene in ripening strawberry and apple fruits. Sci Hortic. 1990;42(4):269–75.

    CAS  Google Scholar 

  • Aggelis A, John I, Karvouni Z, Grierson D. Characterization of two cDNA clones for mRNAs expressed during ripening of melon (Cucumis melo L.) fruits. Plant Mol Biol. 1997;33(2):313–22.

    CAS  PubMed  Google Scholar 

  • Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 2002;53(377):2039–55.

    CAS  PubMed  Google Scholar 

  • Allwood JW, Cheung W, Xu Y, Mumm R, De Vos RC, Deborde C, et al. Metabolomics in melon: a new opportunity for aroma analysis. Phytochemistry. 2014;99:61–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aloni R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta. 2013;238(5):819–30.

    CAS  PubMed  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999;284(5423):2148–52.

    CAS  PubMed  Google Scholar 

  • Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al. The genome of Theobroma cacao. Nat Genet. 2011;43(2):101–8.

    CAS  PubMed  Google Scholar 

  • Argyris JM, Pujol M, Martin-Hernandez AM, Garcia-Mas J. Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiol Plant. 2015;155(1):4–11.

    CAS  PubMed  Google Scholar 

  • Atta-Aly MA, Brecht JK, Huber DJ. Ethylene feedback mechanisms in tomato and strawberry fruit tissues in relation to fruit ripening and climacteric patterns. Postharvest Biol Technol. 2000;20(2):151–62.

    CAS  Google Scholar 

  • Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latche A, et al. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol. 1996;14(7):862–6.

    CAS  PubMed  Google Scholar 

  • Balague C, Watson CF, Turner AJ, Rouge P, Picton S, Pech JC, et al. Isolation of a ripening and wound-induced cDNA from Cucumis melo L. encoding a protein with homology to the ethylene-forming enzyme. Eur J Biochem. 1993;212(1):27–34.

    CAS  PubMed  Google Scholar 

  • Barry C, Mcquinn R, Thompson A, Seymour G, Grierson D, Giovannoni J. Ethylene Insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol. 2005;138(1):267–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barry CS, Giovannoni JJ. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci U S A. 2006;103(20):7923–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 2008;147(1):179–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bemer M, Karlova R, Ballester A, Tikunov Y, Bovy A, Wolters-Arts M, et al. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell. 2012;24(11):4437–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernillon S, Biais B, Deborde C, Maucourt M, Cabasson C, Gibon Y, et al. Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics. 2013;9(1):57–77.

    CAS  Google Scholar 

  • Biale JB. Growth, maturation, and senescence in fruits: Recent knowledge on growth regulation and on biological oxidations has been applied to studies with fruits. Science. 1964;146(3646):880–8.

    CAS  PubMed  Google Scholar 

  • Bleecker AB, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 2000;16:1–18.

    CAS  PubMed  Google Scholar 

  • Boualem A. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.

    CAS  PubMed  Google Scholar 

  • Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321(5890):836–8.

    CAS  PubMed  Google Scholar 

  • Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 2015;350(6261):688–91.

    CAS  PubMed  Google Scholar 

  • Bouquin T, Lasserre E, Pradier J, Pech JC, Balague C. Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways. Plant Mol Biol. 1997;35(6):1029–35.

    CAS  PubMed  Google Scholar 

  • Brady CJ. Fruit ripening. Annu Rev Plant Physiol. 1987;38(1):155–78.

    CAS  Google Scholar 

  • Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, et al. Genetic diversity of Cucumis melo. Hortic Rev. 2010;36:165–98.

    Google Scholar 

  • Cao H, Zhang J, Xu J, Ye J, Yun Z, Xu Q, et al. Comprehending crystalline β-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus. J Exp Bot. 2012;63(12):4403–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI, Pogson BJ. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010;15(5):266–74.

    CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993;262(5133):539–44.

    CAS  PubMed  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89(7):1133–44.

    CAS  PubMed  Google Scholar 

  • Chayut N, Yuan H, Ohali S, Meir A, Yeselson Y, Portnoy V, et al. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit beta-carotene accumulation in melon fruit. BMC Plant Biol. 2015;15:274. doi:10.1186/s12870-015-0661-8.

    PubMed  PubMed Central  Google Scholar 

  • Choudhury SR, Roy S, Sengupta DN. C-terminal phosphorylation is essential for regulation of ethylene synthesizing ACC synthase enzyme. Plant Signal Behav. 2013;8:e23000. doi:10.4161/psb.23000.

    PubMed  Google Scholar 

  • Chung M, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J, et al. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J. 2010;64(6):936–47.

    CAS  PubMed  Google Scholar 

  • Clayberg C. Interaction and linkage tests of flesh color genes in Cucumis melo L. Cucurbit Genet Coop Rep. 1992;15(53):article 18.

    Google Scholar 

  • Clendennen S, Kellogg JA, Wolf KA, Matsumura W, Peters S, Vanwinkle JE, et al. Genetic engineering of cantaloupe to reduce ethylene biosynthesis and control ripening. In: Kanellis A, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D, editors. Biology and biotechnology of the plant hormone ethylene II. Dordrecht: Kluwer Academic Publishers; 1999. p. 371–9.

    Google Scholar 

  • Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci. 2014;5:539. doi:10.3389/fpls.2014.00539.

    PubMed  PubMed Central  Google Scholar 

  • Dahmani-Mardas F, Troadec C, Boualem A, Leveque S, Alsadon AA, Aldoss AA, et al. Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One. 2010;5:e15776. doi:10.1371/journal.pone.0015776.

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488(7410):213–7.

    PubMed  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One. 2007;2:e350. doi:10.1371/journal.pone.0000350.

    PubMed  PubMed Central  Google Scholar 

  • Dong CH, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, et al. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem. 2010;285(52):40706–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong T, Hu Z, Deng L, Wang Y, Zhu M, Zhang J, et al. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol. 2013;163(2):1026–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot. 2005;56(409):81–9.

    CAS  PubMed  Google Scholar 

  • Egea I, Barsan C, Bian W, Purgatto E, Latche A, Chervin C, et al. Chromoplast differentiation: current status and perspectives. Plant Cell Physiol. 2010;51(10):1601–11.

    CAS  PubMed  Google Scholar 

  • Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, et al. Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol. 2004;136(4):4184–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezura H, Owino WO. Melon, an alternative model plant for elucidating fruit ripening. Plant Sci. 2008;175(1–2):121–9.

    CAS  Google Scholar 

  • Ezura H, Akashi Y, Kato K, Kuzuya M. Genetic characterization of long shelf-life in honeydew (Cucumis melo var. inodorus) melon. Acta Hortic. 2002;588:369–72.

    CAS  Google Scholar 

  • Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, et al. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell. 2007;19(10):3194–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, et al. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biol. 2015;15:71. doi:10.1186/s12870-015-0449-x.

    PubMed  PubMed Central  Google Scholar 

  • Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, et al. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta. 2012;235(6):1107–22.

    CAS  PubMed  Google Scholar 

  • Fujisawa M, Nakano T, Shima Y, Ito Y. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell. 2013;25(2):371–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, et al. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell. 2014;26:89–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109(29):11872–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni JJ. Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol. 2007;10(3):283–9.

    CAS  PubMed  Google Scholar 

  • Gonzalez M, Xu M, Esteras C, Roig C, Monforte AJ, Troadec C, et al. Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes. 2011;4:289. doi:10.1186/1756-0500-4-289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guis M, Botondi R, BenAmor M, Ayub R, Bouzayen M, Pech JC, et al. Ripening-associated biochemical traits of cantaloupe Charentais melons expressing an antisense ACC oxidase transgene. J Am Soc Hortic Sci. 1997;122(6):748–51.

    CAS  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45(1):51–8.

    CAS  PubMed  Google Scholar 

  • Hadfield KA, Rose JKC, Bennett AB. The respiratory climacteric is present in Charentais (Cucumis melo cv. Reticulatus F1 Alpha) melons ripened on or off the plant. J Exp Bot. 1995;46(12):1923–5.

    CAS  Google Scholar 

  • Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S, Yamada M, et al. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res. 2014;21(2):169–81.

    CAS  PubMed  Google Scholar 

  • Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998;94(2):261–71.

    CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41(12):1275–81.

    CAS  PubMed  Google Scholar 

  • Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, et al. Draft genome of the kiwifruit Actinidia chinensis. Nat Commun. 2013;4:2640. doi:10.1038/ncomms3640.

    PubMed  PubMed Central  Google Scholar 

  • Hughes M. The inheritance of two characters of Cucumis melo and their interrelationship. P Am Soc Hortic Sci. 1948;52:399–402.

    Google Scholar 

  • Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, et al. Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Plant Sci. 2000;159(2):173–81.

    CAS  PubMed  Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J. 2009;60(6):1081–95.

    CAS  PubMed  Google Scholar 

  • Jaillon O. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–7.

    CAS  PubMed  Google Scholar 

  • Ju C, Chang C. Mechanistic insights in ethylene perception and signal transduction. Plant Physiol. 2015;169(1):85–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, et al. Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants. 2015;1:14004. doi:10.1038/nplants.2014.4.

    CAS  PubMed  Google Scholar 

  • Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H. Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J. 2010;64(1):140–50.

    CAS  PubMed  Google Scholar 

  • Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA. Transcriptional control of fleshy fruit development and ripening. J Exp Bot. 2014;65(16):4527–41.

    CAS  PubMed  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, et al. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell. 2011;23(3):923–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall SA, Ng TJ. Genetic-variation of ethylene production in harvested muskmelon fruits. Hortic Sci. 1988;23(4):759–61.

    Google Scholar 

  • Kende H. Ethylene biosynthesis. Annu Rev Plant Phys. 1993;44(1):283–307.

    CAS  Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J. 2007;51(3):458–67.

    CAS  PubMed  Google Scholar 

  • Kieber J, Rothenberg M, Roman G, Feldmann K, Ecker J. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993;72(3):427–41.

    CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet. 2014;46(3):270–8.

    CAS  PubMed  Google Scholar 

  • Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Gen. 2011;45:41–59.

    CAS  Google Scholar 

  • Kou X, Watkins CB, Gan SS. Arabidopsis AtNAP regulates fruit senescence. J Exp Bot. 2012;63(17):6139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama T. The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front Plant Sci. 2014;5:650. doi:10.3389/fpls.2014.00650.

    PubMed  PubMed Central  Google Scholar 

  • Lasserre E, Bouquin T, Hernandez J, Bull J, Pech J, Balague C. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet. 1996;251(1):81–90.

    CAS  PubMed  Google Scholar 

  • Lasserre E, Godard F, Bouquin T, Hernandez JA, Pech JC, Roby D, et al. Differential activation of two ACC oxidase gene promoters from melon during plant development and in response to pathogen attack. Mol Gen Genet. 1997;256(3):211–22.

    CAS  PubMed  Google Scholar 

  • Lee J, Kim MK, Hwang SH, Kim J, Ahn JM, Min SR, et al. Phenotypic profiling and gene expression analyses for aromatic and volatile compounds in Chamoes (Cucumis melo). Mol Biol Rep. 2014;41(5):3487–97.

    CAS  PubMed  Google Scholar 

  • Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, et al. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015;16:28. doi:10.1186/s12863-015-0183-2.

    PubMed  PubMed Central  Google Scholar 

  • Lelièvre J-M, Latchè A, Jones B, Bouzayen M, Pech J-C. Ethylene and fruit ripening. Physiol Plant. 1997;101(4):727–39.

    Google Scholar 

  • Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L. Interaction study of MADS-domain proteins in tomato. J Exp Bot. 2008;59(8):2253–65.

    CAS  PubMed  Google Scholar 

  • Li Z, Yao L, Yang Y, Li A. Transgenic approach to improve quality traits of melon fruit. Sci Hortic. 2006;108(3):268–77.

    CAS  Google Scholar 

  • Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 2008;55(2):301–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Kakihara F, Kato M. Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica. 2004;135(3):305–13.

    Google Scholar 

  • Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. J Exp Bot. 2012;63(16):5751–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, How-Kit A, Stammitti L, Teyssier E, Rolin D, Mortain-Bertrand A, et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci U S A. 2015;112(34):10804–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell. 2006;18(12):3594–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, et al. A STAY-GREEN protein SlSGR1 regulates lycopene and beta-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 2013;198(2):442–52.

    CAS  PubMed  Google Scholar 

  • Ma B, Cui ML, Sun HJ, Takada K, Mori H, Kamada H, et al. Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiol. 2006;141(2):587–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maass D, Arango J, Wust F, Beyer P, Welsch R. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One. 2009;4:e6373. doi:10.1371/journal/pone.0006373.

    PubMed  PubMed Central  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006;38(8):948–52.

    CAS  PubMed  Google Scholar 

  • Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 2011;157(3):1568–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, et al. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009;461(7267):1135–8.

    CAS  PubMed  Google Scholar 

  • McMurchie EJ, McGlasson WB, Eaks IL. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 1972;237(5352):235–6.

    CAS  PubMed  Google Scholar 

  • Miccolis V, Saltveit ME. Morphological and physiological-changes during fruit-growth and maturation of 7 melon cultivars. J Am Soc Hortic Sci. 1991;116:1025–9.

    Google Scholar 

  • Miki T, Yamamoto M, Nakagawa H, Ogura N, Mori H, Imaseki H, et al. Nucleotide sequence of a cDNA for 1-aminocyclopropane-1-carboxylate synthase from melon fruits. Plant Physiol. 1995;107(1):297–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008;452(7190):991–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno S, Hirasawa Y, Sonoda M, Nakagawa H, Sato T. Isolation and characterization of three DREB/ERF-type transcription factors from melon (Cucumis melo). Plant Sci. 2006;170(6):1156–63.

    CAS  Google Scholar 

  • Moing A, Aharoni A, Biais B, Rogachev I, Meir S, Brodsky L, et al. Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytol. 2011;190(3):683–96.

    CAS  PubMed  Google Scholar 

  • Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2008;116(4):589–602.

    CAS  PubMed  Google Scholar 

  • Mubarok S, Okabe Y, Fukuda N, Ariizumi T, Ezura H. Potential use of a weak ethylene receptor mutant, Sletr1-2, as breeding material to extend fruit shelf life of tomato. J Agric Food Chem. 2015;63(36):7995–8007.

    CAS  PubMed  Google Scholar 

  • Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, et al. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 1998;118(4):1295–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gomez-Guillamon ML, et al. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol. 2007;7:34. doi:10.1186/1471-2229-7-34.

    PubMed  PubMed Central  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. Mol Plant. 2015;8(1):68–82.

    CAS  PubMed  Google Scholar 

  • Nishiyama K, Guis M, Rose JK, Kubo Y, Bennett KA, Wangjin L, et al. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J Exp Bot. 2007;58(6):1281–90.

    CAS  PubMed  Google Scholar 

  • Nuñez-Palenius H, Klee H, Cantliffe D. Embryo-rescue culture of the ‘Galia’ muskmelon (Cucumis melo L. var. reticulatus Ser.) male parental line. Plant Cell Tiss Org. 2006;85(3):345–52.

    Google Scholar 

  • Nunez-Palenius HG, Cantliffe DJ, Huber DJ, Ciardi J, Klee HJ. Transformation of a muskmelon ‘Galia’ hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an antisense ACC oxidase gene. Plant Cell Rep. 2006;25(3):198–205.

    CAS  PubMed  Google Scholar 

  • Nunez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ. Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol. 2008;28(1):13–55.

    CAS  PubMed  Google Scholar 

  • Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T, Bres C, et al. Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries. Plant Cell Physiol. 2011;52(11):1994–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olson DC, Oetiker JH, Yang SF. Analysis of LE-ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem. 1995;270(23):14056–61.

    CAS  PubMed  Google Scholar 

  • Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, et al. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol. 2011;157(1):405–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Owino WO, Ma B, Sun HJ, Shoji T, Ezura H. Characteristics of an ethylene inducible ethylene receptor Cm-ETR2 in melon fruit. In: Ramina A, Chang C, Giovannoni JJ, Klee H, Perata P, Woltering E, editors. Advances in plant ethylene research. Dordrecht: Springer; 2007. p. 39–40.

    Google Scholar 

  • Paul V, Pandey R, Srivastava GC. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene–an overview. J Food Sci Technol. 2012;49(1):1–21.

    CAS  PubMed  Google Scholar 

  • Pech JC, Bouzayen M, Latché A. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 2008;175(1–2):114–20.

    CAS  Google Scholar 

  • Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, et al. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 2002;129(1):300–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powell AL, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science. 2012;336(6089):1711–5.

    CAS  PubMed  Google Scholar 

  • Pratt HK, Goeschl JD, Martin FW. Fruit growth and development, ripening, and role of ethylene in Honey Dew muskmelon. J Am Soc Hortic Sci. 1977;102:203–10.

    CAS  Google Scholar 

  • Qiu L, Xie F, Yu J, Wen CK. Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant Physiol. 2012;159(3):1263–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103(20):7917–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JK, Hadfield KA, Labavitch JM, Bennett AB. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 1998;117(2):345–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saladie M, Canizares J, Phillips MA, Rodriguez-Concepcion M, Larrigaudiere C, Gibon Y, et al. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics. 2015. doi:10.1186/s12864-015-1649-3.

  • Sato-Nara K, Yuhashi KI, Higashi K, Hosoya K, Kubota M, Ezura H. Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol. 1999;120(1):321–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shellie KC, Saltveit ME. The lack of a respiratory rise in muskmelon fruit ripening on the plant challenges the definition of climacteric behaviour. J Exp Bot. 1993;44(8):1403–6.

    CAS  Google Scholar 

  • Shima Y, Fujisawa M, Kitagawa M, Nakano T, Kimbara J, Nakamura N, et al. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci Biotechnol Biochem. 2014;78(2):231–7.

    CAS  PubMed  Google Scholar 

  • Shiomi S, Yamamoto M, Nakamura R, Inaba A. Expression of ACC synthase and ACC oxidase genes in melons harvested at different stages of maturity. J Jpn Soc Hortic Sci. 1999;68(1):10–7.

    CAS  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. The genome of woodland strawberry (Fragaria vesca). Nat Genet. 2011;43(2):109–16.

    CAS  PubMed  Google Scholar 

  • Silva JA, Da Costa TS, Lucchetta L, Marini LJ, Zanuzo MR, Nora L, et al. Characterization of ripening behavior in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylate(ACC) oxidase gene from apple. Postharvest Biol Technol. 2004;32(3):263–8.

    CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Gene Dev. 1998;12(23):3703–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol. 1999a;217(3–4):313–32.

    CAS  Google Scholar 

  • Stepansky A, Kovalski I, Schaffer A, Perl-Treves R. Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet Resour Crop Ev. 1999b;46(1):53–62.

    Google Scholar 

  • Suslow T, Thomas BR, Bradford KJ. Biotechnology provides new tools for plant breeding. Agr Biotechnol Calif S. 2002;8043:1–19.

    Google Scholar 

  • Switzenberg JA, Beaudry RM, Grumet R. Effect of CRC::etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res. 2015;24(3):497–507.

    CAS  PubMed  Google Scholar 

  • Tadmor Y, Katzir N, Meir A, Yaniv-Yaakov A, Sa’ar U, Baumkoler F, et al. Induced mutagenesis to augment the natural genetic variability of melon (Cucumis melo L.). Isr J Plant Sci. 2007;55(2):159–69.

    Google Scholar 

  • Takahashi H, Kobayashi T, Sato-Nara K, Tomita KO, Ezura H. Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). J Exp Bot. 2002;53(368):415–22.

    CAS  PubMed  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–39.

    CAS  PubMed  Google Scholar 

  • Tieman DM, Klee HJ. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol. 1999;120(1):165–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tigchelaar EC, Tomes ML, Kerr EA, Barman RJ. A new fruit ripening mutant, non-ripening (nor). Rep Tomato Genet Coop. 1973;23:33–4.

    Google Scholar 

  • Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci U S A. 2010;107(25):11626–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker GA. Introduction. In: Seymour G, Talor J, Tucker G, editors. Biochemistry of fruit ripening. London: Chapman & Hall; 1993. p. 1–51.

    Google Scholar 

  • Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A, et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 2015;82(2):267–79.

    CAS  PubMed  Google Scholar 

  • Vallone S, Sivertsen H, Anthon GE, Barrett DM, Mitcham EJ, Ebeler SE, et al. An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chem. 2013;139(1–4):171–83.

    CAS  PubMed  Google Scholar 

  • Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126(6):1531–44.

    CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet. 2010;42(10):833–9.

    CAS  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, et al. A MADS-box gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus. Science. 2002;296(5566):343–6.

    CAS  PubMed  Google Scholar 

  • Vrebalov J, Pan I, Arroyo A, McQuinn R, Chung M, Poole M, et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell. 2009;21(10):3041–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14(Suppl):S131–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster BD, Craig ME. Net morphogenesis and characteristics of surface of muskmelon fruit. J Am Soc Hortic Sci. 1976;101:412–5.

    Google Scholar 

  • Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, et al. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell. 2010;22(10):3348–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson J, Lanahan M, Yen H, Giovannoni J, Klee H. An ethylene-inducible component of signal transduction encoded by Never-ripe. Science. 1995;270(5243):1807–9.

    CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23(2):396–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45(1):59–66.

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Miki T, Ishiki Y, Fujinami K, Yanagisawa Y, Nakagawa H, et al. The synthesis of ethylene in melon fruit during the early stage of ripening. Plant Cell Physiol. 1995;36(4):591–6.

    CAS  Google Scholar 

  • Yamane M, Abe D, Yasui S, Yokotani N, Kimata W, Ushijima K, et al. Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biol Technol. 2007;44(3):220–7.

    CAS  Google Scholar 

  • Yen HC, Lee S, Tanksley SD, Lanahan MB, Klee HJ, Giovannoni JJ. The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiol. 1995;107(4):1343–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Zhang J, Nageswaran D, Li L. Carotenoid metabolism and regulation in horticultural crops. Hortic Res. 2015;2:15036. doi:10.1038/hortres.2015.36.

    PubMed  PubMed Central  Google Scholar 

  • Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol. 2013;31(2):154–9.

    CAS  PubMed  Google Scholar 

  • Zhou X, Liu Q, Xie F, Wen CK. RTE1 is a golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol. 2007;145(1):75–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Welsch R, Yang Y, Alvarez D, Riediger M, Yuan H, et al. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci U S A. 2015;112(11):3558–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, et al. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 2014;55(1):119–35.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ezura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yano, R., Ezura, H. (2016). Fruit Ripening in Melon. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. https://doi.org/10.1007/7397_2016_11

Download citation

Publish with us

Policies and ethics