Skip to main content

Past, Present, and Future of Antifungal Drug Development

  • Chapter
  • First Online:
Book cover Communicable Diseases of the Developing World

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 29))

Abstract

Fungi are eukaryotic, single cell or multicellular organisms which cause a wide range of human diseases ranging from superficial skin to invasive life-threatening infections. Over the last couple of decades the incidence of life-threatening fungal infections has increased seriously as the patients of AIDS, cancer, organ transplant and immune-compromised population have increased. Though a significant progress has been made in the discovery of antifungal agents in the form of polyenes, azoles and allylamines yet the antifungal therapy poses severe challenge because of the side effects, narrow spectrum of activity and recently development resistance among patients against the present antifungals. This chapter deals with the current antifungal agents, their spectrum of activity, mode of action, limitations, current challenges in antifungal therapy, and new avenues for future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  2. Carris LM, Little CR, Stiles CM (2012) Introduction to fungi. Plant Health Instructor. doi:10.1094/PHI-I-2012-0426-01

    Article  Google Scholar 

  3. Martin DS, Jones CP (1940) Further studies on the practical classification of the Monilias. J Bacteriol 39(5):609–630

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sobel JD, Vazquez J (1990) Candidemia and systemic candidiasis. Semin Respir Infect 5:123–137

    CAS  PubMed  Google Scholar 

  5. Rippon JW (1982) Medical mycology: the pathogenic fungi and the pathogenic actinomycetes. Saunders, Philadelphia

    Google Scholar 

  6. Stein DK, Sugar AM (1989) Fungal infections in the immunocompromised host. Diagn Microbiol Infect Dis 12:221S–228S

    Article  CAS  PubMed  Google Scholar 

  7. Larriba G, Rubio Coque JJ, Ciudad A, Andaluz E (2000) Candida albicans molecular biology reaches its maturity. Int Microbiol 3:247–252

    CAS  PubMed  Google Scholar 

  8. Carrillo-Munoz AJ, Giusiano G, Ezkurra PA, Quindos G (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 19:130–139

    CAS  PubMed  Google Scholar 

  9. Andriole VT (1999) Current and future antifungal therapy: new targets for antifungal agents. J Antimicrob Chemother 44:151–162

    Article  CAS  PubMed  Google Scholar 

  10. Ahmad S, Khan Z, Mustafa AS, Khan ZU (2002) Seminested PCR for diagnosis of candidemia: comparison with culture, antigen detection, and biochemical methods for species identification. J Clin Microbiol 40:2483–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujita S, Lasker BA, Lott TJ, Reiss E, Morrison CJ (1995) Microtitration plate enzyme immunoassay to detect PCR amplified DNA from Candida species in blood. J Clin Microbiol 33:962–967

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Iwastu TM, Miyaji M, Taguchi H, Okamoto S (1982) Evaluation of skin test for chromoblastomycosis using antigen prepared from cultural filtrates of Fonsecaea pedrosoi, Phlalophora verrucosa, Wangiella dermatitidis and Exophiala jeanselmei. Mycopathologia 77:59–64

    Article  Google Scholar 

  13. Wu Z, Tsumura Y, Blomquist G, Wang X (2003) 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolate. Appl Environ Microbiol 69:5389–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrer C, Colom F, Frases S, Mulet E, Abad JL, Alio JL (2001) Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J Clin Microbiol 39:2873–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrer C, Munoz G, Alio JL, Colom F (2002) Polymerase chain reaction diagnosis in fungal keratitis caused by Alternaria alternata. Am J Ophthalmol 133:398–399

    Article  PubMed  Google Scholar 

  16. Holmberd K, Feroze F (1996) Evaluation of an optimized system for random amplified polymorphic DNA (RAPD)-analysis for genotypic mapping of Candida albicans strains. J Clin Lab Anal 10:59–69

    Article  Google Scholar 

  17. Hui M, Ip M, Chan PK, Chin ML, Cheng AF (2000) Rapid identification of medically important Candida to species level by polymerase chain reaction and single-strand conformational polymorphism. Diagn Microbiol Infect Dis 38:95–99

    Article  CAS  PubMed  Google Scholar 

  18. Humphreis SE, Gudnason V, Whittall R, Day INM (1997) Single stranded conformation polymorphism analysis with high throughput modifications and its use in mutation detection in familial hypercholesterolemia. Clin Chem 43:427–435

    Google Scholar 

  19. Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer region as molecular targets to detect and identify human fungal pathogens. Med Mycol 40:87–109

    Article  CAS  PubMed  Google Scholar 

  20. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  21. Gillman LM, Gunton J, Turenne CY, Wolfe J, Kabani AM (2001) Identification of Mycobacterium species by multiple-fluorescence PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 39:3085–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumeda Y, Asao T (1996) Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi. Appl Environ Microbiol 62:2947–2952

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mora D, Ricci G, Gugliemetti S, Daffonchio D, Fortina MG (2003) 16S-23S rRNA intergenic spacer region sequence variation in Streptococcus thermophilus and related dairy streptococci and development of a multiplex ITS-SSSP analysis for their identification. Microbiology 149:807–813

    Article  CAS  PubMed  Google Scholar 

  24. Rath PM, Ansorg R (2000) Identification of medically important Aspergillus species by single stranded conformational polymorphism (SSCP) of the PCR-amplified intergenic spacer region. Mycoses 43:381–386

    Article  CAS  PubMed  Google Scholar 

  25. Pfaller MA, Messer SA, Boyken L, Tendolkar S, Hollis RJ, Diekema DJ (2004) Geographic variation in the susceptibilities of invasive isolates of Candida glabrata to seven systemically active antifungal agents: a global assessment from the ARTEMIS Antifungal Surveillance Program conducted in 2001 and 2002. J Clin Microbiol 42:3142–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hazen EL (1960) Nystatin. Ann N Y Acad Sci 89:258–266

    Article  CAS  PubMed  Google Scholar 

  27. Mayers DL (2009) Antimicrobial drug resistance: mechanism of drug resistance vol. 1. Humana Press/Springer, Totowa/New York, p 299

    Book  Google Scholar 

  28. Hazen EL, Brown R (1950) Two antifungal agents produced by a soil actinomycete. Science 112:423

    CAS  PubMed  Google Scholar 

  29. Hazen EL, Brown R (1951) Fungicidin, an antibiotic produced by a soil actinomycete. Proc Soc Exp Biol Med 76:93

    Article  CAS  PubMed  Google Scholar 

  30. Harris EJ, Pritzker HG, Laski B, Eisen A, Steiner JW, Shack L (1958) The effect of nystatin (mycostatin) on neonatal candidiasis (thrush)- a method of eradicating thrush from hospital nurseries. Can Med Assoc J 79(11):891–896

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sklenář Z, Ščigel V, Horáčkova K, Slanař O (2013) Compounded preparations with nystatin for oral and oromucosal administration. Acta Pol Pharm Drug Res 70:759–762

    Google Scholar 

  32. Lencelin JM et al (1988) Tetrahedron Lett 29:2827

    Article  Google Scholar 

  33. Pandey RC, Rinehart KL (1976) J Antibiot 29:1035

    Article  CAS  PubMed  Google Scholar 

  34. Groll AH, Gonzalez CE, Giri N et al (1999) Liposomal nystatin against experimental pulmonary aspergillosis in persistently neutropenic rabbits: efficacy, safety and non-compartmental pharmacokinetics. J Antimicrob Chemother 44(3):397–401

    Article  Google Scholar 

  35. Wallace TL, Paetznick V, Cossum PA, Lopez-Berestein G, Rex JH, Anaissie E (1997) Activity of liposomal nystatin against disseminated Aspergillus fumigatus infection in neutropenic mice. Antimicrob Agents Chemother 41(10):2238–2243

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Farid MA, El-Enshasy HA, El-Diwany AI, El-Sayed ESA (2000) Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. J Basic Microbiol 40(3):157–166

    Article  CAS  PubMed  Google Scholar 

  37. Lalitha P, Kumar VR, Prajna NV, Fothergill AW (2008) In vitro natamycin susceptibility of ocular isolates of Fusarium and Aspergillus species: comparison of commercially formulated natamycin eye drops to pharmaceutical-grade powder. J Clin Microbiol 46(10):3477–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:1–27. doi:10.1155/2012/713687

    Article  CAS  Google Scholar 

  39. Caffrey P, Lynch S, Flood E, Finnan S, Oliynyk M (2001) Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem Biol 8(7):713–723

    Article  CAS  PubMed  Google Scholar 

  40. Matsumori N, Sawada Y, Murata M (2005) Mycosamine orientation of amphotericin B controlling interaction with ergosterol: sterol-dependent activity of conformation-restricted derivatives with an amino-carbonyl bridge. J Am Chem Soc 127:10667–10675

    Article  CAS  PubMed  Google Scholar 

  41. Barratt G, Bretagne S (2007) Optimizing efficacy of amphotericin B through nanomodification. Int J Nanomedicine 2:301–313

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ogita A, Fujita KI, Tanaka T (2012) Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Front Microbiol 3:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallis H, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12(2):308–329

    Article  CAS  PubMed  Google Scholar 

  44. Laniado-Laborín R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227

    Article  PubMed  Google Scholar 

  45. Czub J, Baginski M (2006) Modulation of amphotericin B membrane interaction by cholesterol and ergosterol--a molecular dynamics study. J Phys Chem B 110(33):16743–16753

    Article  CAS  PubMed  Google Scholar 

  46. Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD (2011) Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci U S A 108(17):6733–6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gray KC, Palacios DS, Dailey I et al (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109(7):2234–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilcock BC, Endo MM, Uno BE, Burke MD (2013) C2-OH of amphotericin B plays an important role in binding the primary sterol of human cells but not yeast cells. J Am Chem Soc 135(23):8488–8491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anderson TM, Clay MC, Cioffi AG et al (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10(5):400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Messer SA, Jones RN, Fritsche TR (2006) International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2003). J Clin Microbiol 44:1782–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sokol-Anderson ML, Brajtburg J, Medoff G (1986) Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 154:76–83

    Article  CAS  PubMed  Google Scholar 

  52. Maertens JA (2004) History of the development of azole derivatives. Clin Microbiol Infect 10(Suppl 1):1–10

    Article  CAS  PubMed  Google Scholar 

  53. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  CAS  PubMed  Google Scholar 

  54. Fromtling RA (1988) Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1:187–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Elkasabgy NA (2014) Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability. Int J Pharm 460:33–44

    Article  CAS  PubMed  Google Scholar 

  57. Thienpont D, Van Cutsem J, Van Nueten JM, Niemegeers CJ, Marsboom R (1975) Bilogical and toxicological properties of econazole, a broad-spectrum antimycotic. Arzneimittelforschung 25:224–230

    CAS  PubMed  Google Scholar 

  58. Heel RC, Brogden RN, Speight TM, Avery GS (1978) Econazole: a review of its antifungal activity and therapeutic efficacy. Drugs 16(3):177–201

    Article  CAS  PubMed  Google Scholar 

  59. Waitz JA, Moss EL, Weinstein MJ (1971) Chemotherapeutic evaluation of clotrimazole (Bay b 5097, 1 (o-chloro- - -diphenylbenzyl) imidazole). Appl Microbiol 22:891–898

    CAS  PubMed  PubMed Central  Google Scholar 

  60. World Health Organization (2013) WHO model list of essential medicines. World Health Organization. October 2013. Edition 18. http://www.who.int/medicines/publications/essentialmedicines/en/index.html. Retrieved 22 Apr 2014

  61. Haller I (1985) Mode of action of clotrimazole: implications for therapy. Am J Obstet Gynecol 152(7 Pt 2):939–944

    Article  CAS  PubMed  Google Scholar 

  62. Rai VK, Dwivedi H, Yadav NP, Chanotiya CS, Saraf SA (2014) Solubility enhancement of miconazole nitrate: binary and ternary mixture approach. Drug Dev Ind Pharm 40:363–9045

    Article  CAS  Google Scholar 

  63. Morita T, Nozawa Y (1985) Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J Invest Dermatol 85:434–437

    Article  CAS  PubMed  Google Scholar 

  64. Puolakka J, Tuimala R (1983) Comparison between oral ketoconazole and topical miconazole in the treatment of vaginal candidiasis. Acta Obstet Gynecol Scand 62:575–577

    Article  CAS  PubMed  Google Scholar 

  65. Rollman O (1982) Treatment of onychomycosis by partial nail avulsion and topical miconazole. Dermatologica 165:54–61

    Article  CAS  PubMed  Google Scholar 

  66. Brugmans JB, Van Cutsem JM, Thienpont DC (1970) Treatment of long-term tinea pedis with miconazole. Arch Dermatol 102:428–432

    Article  CAS  PubMed  Google Scholar 

  67. Van Cutsem J, Reyntjens A (1978) Miconazole treatment of pityriasis versicolor a review. Mykosen 21(3):87–91

    Article  PubMed  Google Scholar 

  68. Sung JP, Grendahl JG, Levine HB (1977) Intravenous and intrathecal miconazole therapy for systemic mycoses. West J Med 126:5–13

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Balata G, Mahdi M, Bakera RA (2010) Improvement of solubility and dissolution properties of ketoconazole by solid dispersions and inclusion complexes. Asian J Pharm Sci 5:1–12

    Google Scholar 

  70. Rotstein DM, Kertesz DJ, Walker KAM et al (1992) J Med Chem 35:2818

    Article  CAS  PubMed  Google Scholar 

  71. Hume AL, Kerkering TM (1983) Ketoconazole. Drug Intell Clin Pharm 17:169–174

    Article  CAS  PubMed  Google Scholar 

  72. Terrell CL (1999) Antifungal agents. Part II. The azoles. Mayo Clin Proc 74:78–100

    Article  CAS  PubMed  Google Scholar 

  73. Gary G (2013) Optimizing treatment approaches in seborrheic dermatitis. J Clin Aesthet Dermatol 6:44–49

    PubMed  PubMed Central  Google Scholar 

  74. Venkateswarlu K, Kelly SL (1996) Biochemical characterisation of ketoconazole inhibitory action on Aspergillus fumigatus. FEMS Immunol Med Microbiol 16:11–20

    Article  CAS  PubMed  Google Scholar 

  75. Wood A (1994) Oral azole drugs as systemic antifungal therapy. N Engl J Med 330:263–272

    Article  Google Scholar 

  76. Perfect JR, Durack DT (1985) Penetration of imidazoles and triazoles into cerebrospinal fluid of rabbits. J Antimicrob Chemother 16:81–86

    Article  CAS  PubMed  Google Scholar 

  77. Van Tyle JH (1984) Ketoconazole. Mechanism of action, spectrum of activity, pharmacokinetics, drug interactions, adverse reactions and therapeutic use. Pharmacotherapy 4:343–373

    Article  PubMed  Google Scholar 

  78. Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318

    Article  CAS  PubMed  Google Scholar 

  79. Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85

    Article  CAS  PubMed  Google Scholar 

  80. Albertson GD, Niimi M, Cannon RD, Jenkinson HF (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40:2835–2841

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, Ibrahim AS, Ghannoum MA, Filler SG (1998) Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 42:2645–2649

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kelly SL, Lamb DC, Kelly DE, Manning NJ, Loeffler J, Hebart H, Schumacher U, Einsele H (1997) Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta 5,6-desaturation. FEBS Lett 400:80–82

    Article  CAS  PubMed  Google Scholar 

  83. Bossche HV, Marichal P, Odds FC (1994) Molecular mechanisms of drug resistance in fungi. Trends Microbiol 2:393–400

    Article  Google Scholar 

  84. Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 4:1–23

    Article  PubMed  CAS  Google Scholar 

  85. Stiller RL, Bennett JE, Scholer HJ, Wall M, Polak A, Stevens DA (1982) Susceptibility to 5-fluorocytosine and prevalence of serotype in 402 Candida albicans isolates from the United States. Antimicrob Agents Chemother 22:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zervos M, Meunier F (1993) Fluconazole (diflucan): a review. Int J Antimicrob Agents 3:147–170

    Article  CAS  PubMed  Google Scholar 

  87. Philpott-Howard JN, Wade JJ, Mufti GJ, Brammer KW, Ehninger G (1993) Randomized comparison of oral fluconazole versus oral polyenes for the prevention of fungal infection in patients at risk of neutropenia. Multicentre Study Group. J Antimicrob Chemother 31:973–984

    Article  CAS  PubMed  Google Scholar 

  88. Martin MV (1999) The use of fluconazole and itraconazole in the treatment of Candida albicans infections: a review. J Antimicrob Chemother 44:429–437

    Article  CAS  PubMed  Google Scholar 

  89. Willems L, Geest VD, De Beule K (2001) Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther 26:159–169

    Article  CAS  PubMed  Google Scholar 

  90. Jaruratanasirikul S, Kleepkaew A (1997) Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 66:235–237

    Article  Google Scholar 

  91. Odds FC, Oris M, Dorsselaer PV, Gerven FV (2000) Activities of an intravenous formulation of itraconazole in experimental disseminated Aspergillus, Candida, and Cryptococcus infections. Antimicrob Agents Chemother 44:3180–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kauffman CA (1996) Role of azoles in antifungal therapy. Clin Infect Dis 22(2):S148–S153

    Article  CAS  PubMed  Google Scholar 

  93. Aftab BT, Dobromilskaya I, Liu JO, Rudin CM (2011) Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res 71:6764–6772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saravolatz LD, Johnson LB, Kauffman CA (2003) Voriconazole: a new triazole antifungal agent. Clin Infect Dis 36:630–637

    Article  Google Scholar 

  95. Van Duin D, Cleare W, Zaragoza O, Nosanchuk JD, Casadevall A (2014) Effects of voriconazole on Cryptococcus neoformans. Antimicrob Agents Chemother 48:2014–2020

    Article  CAS  Google Scholar 

  96. Rafael Z, Javier P (2008) Adv Sepsis 6:90

    Google Scholar 

  97. Ghannoum MA, Kuhn DM (2002) Eur J Med Res 7:242

    CAS  PubMed  Google Scholar 

  98. Denning DW, Ribaud P, Milpied H, Raoul N, Eckhard T, Andrea H (2002) Clin Infect Dis 34:563

    Article  CAS  PubMed  Google Scholar 

  99. Pascual A, Calandra T, Bolay S et al (2008) Clin Infect Dis 46:201

    Article  CAS  PubMed  Google Scholar 

  100. Lewis RE (2008) Clin Infect Dis 46:212

    Article  CAS  PubMed  Google Scholar 

  101. Zonios DL, Gea-Banacloche J, Childs R (2008) Clin Infect Dis 47:e7–e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pasqualotto AC, Xavier MO, Andreolla HF, Linden R (2010) Voriconazole therapeutic drug monitoring: focus on safety. Expert Opin Drug Saf 9:125–137

    Article  CAS  PubMed  Google Scholar 

  103. Kauffman CA, Malani AN, Easley C, Kirkpatrick P (2007) Posaconazole. Nat Rev Drug Discov 6(3):183–184

    Article  CAS  PubMed  Google Scholar 

  104. Ullmann AJ, Lipton JH, Vesole DH (2007) N Engl J Med 356:335

    Article  CAS  PubMed  Google Scholar 

  105. Keating GM (2005) Drugs 65:1553

    Article  CAS  PubMed  Google Scholar 

  106. Torres HA, Hachem RY, Chemaly RF, Kantoyiannis DP, Raad I (2005) Lancet Infect Dis 5:775

    Article  CAS  PubMed  Google Scholar 

  107. Yamazumi T, Pfaller MA, Messer SA (2000) Antimicrob Agents Chemother 44:6

    Article  Google Scholar 

  108. Mikamo H, Yin XH, Hayasaki Y et al (2002) Penetration of ravuconazole, a new triazole antifungal, into rat tissues. Chemotherapy 48:7–9

    Article  CAS  PubMed  Google Scholar 

  109. Pfaller MA, Messer SA, Hollis RJ (2002) Antimicrob Agents Chemother 46:1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61(Suppl 1):19–30. doi:10.1093/jac/dkm428

    Article  CAS  Google Scholar 

  111. Marino MR, Mummanei V, Norton J, et al (2001) Ravuconazole exposure-response relationship in HIV-patients with oropharyngeal candidiasis. In: Abstracts of the forty-first interscience conference on Antimicrobial Agents and Chemotherapy, Chicago. American Society for Microbiology, Washington, DC. Abstract J-1622

    Google Scholar 

  112. Giovanna Setzu M, Stefancich G, La Colla P, Castellano S (2002) Synthesis and antifungal properties of N-[(1,1′-biphenyl)-4-ylmethyl]-1H-imidazol-1-amine derivatives. Farmaco 57:1015–1018

    Article  CAS  Google Scholar 

  113. Günay NS, Çapan G, Ulusoy N, Ergenç N, Ötük G, Kaya D (1999) 5-Nitroimidazole derivatives as possible antibacterial and antifungal agents. Farmaco 54:826–831

    Article  PubMed  Google Scholar 

  114. Olender D, Żwawiak J, Lukianchuk V, Lesyk R, Kropacz A, Fojutowski A, Zaprutko L (2009) Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents. Eur J Med Chem 44:645–652

    Article  CAS  PubMed  Google Scholar 

  115. Rossello A, Bertini S, Lapucci A, Macchia M, Martinelli A, Rapposelli S, Herreros E, Macchia B (2002) Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. J Med Chem 45:4903–4912

    Article  CAS  PubMed  Google Scholar 

  116. Di Santo R, Tafi A, Costi R, Botta M, Artico M, Corelli F, Forte M, Caporuscio F, Angiolella L, Palamara AT (2005) Antifungal agents. 11. N-substituted derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole: synthesis, anti-Candida activity, and QSAR studies. J Med Chem 48:5140–5153

    Article  PubMed  CAS  Google Scholar 

  117. Lorus Therapeutic, Inc. (2011) 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents. US7884120

    Google Scholar 

  118. Lorus Therapeutic, Inc. (2013) 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents. US8394815

    Google Scholar 

  119. Pore VS, Aher NG, Kumar M, Shukla PK (2006) Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron 62:11178–11186

    Article  CAS  Google Scholar 

  120. Zhao QJ, Song Y, Hu HG, Yu SC, Wu QY (2007) Design, synthesis and antifungal activity of novel triazole derivatives. Chin Chem Lett 18:670–672

    Article  CAS  Google Scholar 

  121. Lebouvier N, Pagniez F, Duflos M, Le Pape P, Na YM, Le Baut G, Le Borgne M (2007) Synthesis and antifungal activities of new fluconazole analogues with azaheterocycle moiety. Bioorg Med Chem Lett 17:3686–3689

    Article  CAS  PubMed  Google Scholar 

  122. Uchida T, Somada A, Kagoshima Y, Konosu T, Oida S (2008) Carbon analogs of antifungal dioxane-triazole derivatives: synthesis and in vitro activities. Bioorg Med Chem Lett 18:6538–6541

    Article  CAS  PubMed  Google Scholar 

  123. Guillon R, Giraud F, Logé C, Le Borgne M, Picot C, Pagniez F, Le Pape P (2009) Design of new antifungal agents: synthesis and evaluation of 1-[(1H-indol-5-ylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols. Bioorg Med Chem Lett 19:5833–5836

    Article  CAS  PubMed  Google Scholar 

  124. Dan ZG, Zhang J, Yu SC, Hu HG, Chai XY, Sun QY, Wu QY (2009) Design and synthesis of novel triazole antifungal derivatives based on the active site of fungal lanosterol 14a-demethylase (CYP51). Chin Chem Lett 20:935–938

    Article  CAS  Google Scholar 

  125. Borate HB, Maujan SR, Sawargave SP, Chandavarkar MA, Vaiude SR, Joshi VA, Wakharkar RD, Iyer R, Kelkar RG, Chavan SP, Kunte SS (2010) Fluconazole analogues containing 2H-1,4-benzothiazin-3(4H)-one or 2H-1,4-benzoxazin-3(4H)-one moieties, a novel class of anti-Candida agents. Bioorg Med Chem Lett 20:722–725

    Article  CAS  PubMed  Google Scholar 

  126. He QQ, Liu CM, Li K, Cao YB (2007) Design, synthesis of novel antifungal triazole derivatives with high activities against Aspergillus fumigatus. Chin Chem Lett 18:421–423

    Article  CAS  Google Scholar 

  127. He QQ, Li K, Cao YB, Dong HW, Zhao LH, Liu CM, Sheng CQ (2007) Design, synthesis and molecular docking studies of novel triazole antifungal compounds. Chin Chem Lett 18:663–666

    Article  CAS  Google Scholar 

  128. Nam N-H, Sardari S, Selecky M, Parang K (2004) Carboxylic acid and phosphate ester derivatives of fluconazole: synthesis and antifungal activities. Bioorg Med Chem 12:6255–6269

    Article  CAS  PubMed  Google Scholar 

  129. Upadhayaya RS, Jain S, Sinha N, Kishore N, Chandra R, Arora SK (2004) Synthesis of novel substituted tetrazoles having antifungal activity. Eur J Med Chem 39:579–592

    Article  CAS  PubMed  Google Scholar 

  130. Wei JJ, Jin L, Wan K, Zhou CH (2011) Synthesis of novel D-glucose-derived benzyl and alkyl 1,2,3-triazoles as potential antifungal and antibacterial agents. Bull Korean Chem Soc 32:229–238

    Article  CAS  Google Scholar 

  131. Che X, Sheng C, Wang W, Cao Y, Xu Y, Ji H, Dong G, Miao Z, Yao J, Zhang W (2009) New azoles with potent antifungal activity: design, synthesis and molecular docking. Eur J Med Chem 44:4218–4226

    Article  CAS  PubMed  Google Scholar 

  132. Daewoong Pharmaceutical Co. (2011) Antifungal triazole derivatives. US7968579

    Google Scholar 

  133. Daewoong Pharmaceutical Co. (2011) Antifungal triazole derivatives, method for the preparation thereof and pharmaceutical composition containing same. US8063229

    Google Scholar 

  134. Council of Scientific & Industrial Research and FDC Ltd. (2012) Antifungal compounds containing benzothiazinone, benzoxazinone, or benzoxazolinone and process thereof. US8129369

    Google Scholar 

  135. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS (2013) Flucytosine and cryptococcosis: time to urgently address the world wide accessibility of a 50-year-old antifungal. J Antimicrob Chemother 68:2435–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Perumalla S, Pedireddi V, Sun C (2013) Design, synthesis, and characterization of new 5-flucytosine salts. Mol Pharm 10:2462–2466

    Article  CAS  PubMed  Google Scholar 

  137. Defever KS, Whelan WL, Rogers AL, Beneke ES, Veselenak JM, Soll DR (1982) Candida albicans resistance to 5-fluorocytosine: frequency of partially resistant strains among clinical isolates. Antimicrob Agents Chemother 22:810–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hector RF, Domer JE, Carrow EW (1982) Immune responses to Candida albicans in genetically distinct mice. Infect Immun 38:1020–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Polak A, Scholer HJ (1975) Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21:113–130

    Article  CAS  PubMed  Google Scholar 

  140. Whelan WL, Kerridge D (1984) Decreased activity of UMP pyrophosphorylase associated with resistance to 5-fluorocytosine in Candida albicans. Antimicrob Agents Chemother 26:570–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cassone A, Bernardis FD, Torososantucci A (2005) An outline of the role of anti-Candida antibodies within the context of passive immunization and protection from candidiasis. Curr Mol Med 5:377–382

    Article  CAS  PubMed  Google Scholar 

  143. Cassone A, Mason RE, Kerridge D (1981) Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 19:97–110

    Article  CAS  PubMed  Google Scholar 

  144. Gupta AK, Shear NH (1997) Terbinafine: an update. J Am Acad Dermatol 37:979–988

    Article  CAS  PubMed  Google Scholar 

  145. Darkes MJM, Scott LJ, Goa KL (2003) Terbinafine: a review of its use in onychomycosis in adults. Am J Clin Dermatol 4:39–65

    Article  PubMed  Google Scholar 

  146. Callen JP, Hughes P, Kulp-Shorten C (2001) Subacute cutaneous lupus erythematosus induced or exacerbated by terbinafine: a report of 5 cases. Arch Dermatol 137L:1196–1198

    Google Scholar 

  147. Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl 39):2–7

    Article  PubMed  Google Scholar 

  148. Georgopoulos A, Petranyi G, Mieth H, Drews J (1981) In vitro activity of naftifine, a new antifungal agent. Antimicrob Agents Chemother 19:386–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Venugopal PV, Venugopal TV (1994) Antidermatophytic activity of allylamine derivatives. Indian J Pathol Microbiol 37:381–388

    CAS  PubMed  Google Scholar 

  150. Gupta AK, Ryder JE, Cooper EA (2008) Naftifine: a review. J Cutan Med Surg 12:51–58

    Article  CAS  PubMed  Google Scholar 

  151. Ghannoum M et al (2013) In vitro antifungal activity of naftifine hydrochloride against dermatophytes. Antimicrob Agents Chemother 57:4369–4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ryder NS, Dupont MC (1985) Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem J 230:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Regli P, Ferrari H (1989) In vitro action spectrum of a new antifungal agent derived from morpholine: amorolfin. Pathol Biol 37:617–620

    CAS  PubMed  Google Scholar 

  154. Hänel H, Smith-Kurtz E, Pastowsky S (1991) Therapy of seborrheic eczema with an antifungal agent with an antiphlogistic effect. Mycoses 34(Suppl 1):91–93

    PubMed  Google Scholar 

  155. Singal A (2008) Butenafine and superficial mycoses: current status. Expert Opin Drug Metab Toxicol 4:999–1005

    Article  CAS  PubMed  Google Scholar 

  156. Das S, Barbhuniya JN, Biswas I, Bhattacharya S, Kundu PK (2010) Studies on comparison of the efficacy of terbinafine 1% cream and butenafine 1% cream for the treatment of Tinea cruris. Indian Dermatol Online J 1:8–9

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ryu C-K, Lee JY, Park R-E, Ma M-Y, Nho J-H (2007) Synthesis and antifungal activity of 1H-indole-4,7-diones. Bioorg Med Chem Lett 17:127–131

    Article  CAS  PubMed  Google Scholar 

  158. Xu H, Wang Y-Y (2010) Antifungal agents. Part 5: synthesis and antifungal activities of aminoguanidine derivatives of N-arylsulfonyl-3-acylindoles. Bioorg Med Chem Lett 20:7274–7277

    Article  CAS  PubMed  Google Scholar 

  159. Ryu C-K, Lee S-Y, Kim NY, Hong JA, Yoon JH, Kim A (2011) Synthesis and antifungal evaluation of 6-hydroxy-1H-carbazole-1,4(9H)-diones. Bioorg Med Chem Lett 21:427–430

    Article  CAS  PubMed  Google Scholar 

  160. Na Y-M, Borgne ML, Pagniez F, Baut GL, Pape PL (2003) Synthesis and antifungal activity of new 1-halogenobenzyl-3-imidazolylmethylindole derivatives. Eur J Med Chem 38:75–87

    Article  CAS  PubMed  Google Scholar 

  161. Tiwari RK, Verma AK, Chhillar AK, Singh D, Singh J, Kasi Sankar V et al (2006) Synthesis and antifungal activity of substituted-10-methyl-1,2,3,4-tetrahydropyrazino[1,2-a]indoles. Bioorg Med Chem 14:2747–2752

    Article  CAS  PubMed  Google Scholar 

  162. Musiol R, Jampilek J, Buchta V, Silva L, Niedbala H, Podeszwa B et al (2006) Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem 14:3592–3598

    Article  CAS  PubMed  Google Scholar 

  163. Meléndez Gómez CM, Kouznetsov VV, Sortino MA, Álvarez SL, Zacchino SA (2008) In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels–Alder reactions. Bioorg Med Chem 16:7908–7920

    Article  PubMed  CAS  Google Scholar 

  164. Yu Z, Shi G, Sun Q, Jin H, Teng Y, Tao K et al (2009) Design, synthesis and in vitro antibacterial/antifungal evaluation of novel 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7(1-piperazinyl)quinoline-3-carboxylic acid derivatives. Eur J Med Chem 44:4726–4733

    Article  CAS  PubMed  Google Scholar 

  165. Boateng CA, Eyunni SVK, Zhu XY, Etukala JR, Bricker BA, Ashfaq MK et al (2011) Benzothieno[3,2-b]quinolinium and 3-(phenylthio)quinolinium compounds: synthesis and evaluation against opportunistic fungal pathogens. Bioorg Med Chem 19:458–470

    Article  CAS  PubMed  Google Scholar 

  166. Tang H, Zheng C, Lv J, Wu J, Li Y, Yang H et al (2010) Synthesis and antifungal activities in vitro of novel pyrazino [2,1-a] isoquinolin derivatives. Bioorg Med Chem Lett 20:979–982

    Article  CAS  PubMed  Google Scholar 

  167. Jatav V, Kashaw S, Mishra P (2008) Synthesis, antibacterial and antifungal activity of some novel 3-[5-(4-substituted phenyl) 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Med Chem Res 17:169–181

    Article  CAS  Google Scholar 

  168. Abdel-Gawad SM, El-Gaby MSA, Ghorab MM (2000) Synthesis and antifungal activity of novel pyrano[2′,3′:4,5]thiazolo[2,3-b]quinazolines, pyrido[2′,3′:4,5]thiazolo[2,3-b]quinazolines and pyrazolo[2′,3′:4,5]thiazolo[2,3-b]quinazolines. Farmaco 55:287–292

    Article  CAS  PubMed  Google Scholar 

  169. Jalilian AR, Sattari S, Bineshmarvasti M, Daneshtalab M, Shafiee A (2003) Synthesis and in vitro antifungal and cytotoxicity evaluation of substituted 4,5-dihydronaphtho[1,2-d][1,2,3]thia(or selena)diazoles. Farmaco 58:63–68

    Article  CAS  PubMed  Google Scholar 

  170. Fuglseth E, Otterholt E, Høgmoen H, Sundby E, Charnock C, Hoff BH (2009) Chiral derivatives of Butenafine and Terbinafine: synthesis and antifungal activity. Tetrahedron 65:9807–9813

    Article  CAS  Google Scholar 

  171. Mallikarjuna BP, Sastry BS, Suresh Kumar GV, Rajendraprasad Y, Chandrashekar SM, Sathisha K (2009) Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring systems – a novel class of potential antibacterial, antifungal and antitubercular agents. Eur J Med Chem 44:4739–4746

    Article  CAS  PubMed  Google Scholar 

  172. Omar K, Geronikaki A, Zoumpoulakis P, Camoutsis C, Soković M, Ćirić A et al (2010) Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg Med Chem 18:426–432

    Article  CAS  PubMed  Google Scholar 

  173. Pitta E, Tsolaki E, Geronikaki A, Petrovic J, Glamoclija J, Sokovic M et al (2015) 4-Thiazolidinone derivatives as potent antimicrobial agents: microwave-assisted synthesis, biological evaluation and docking studies. MedChemComm 6:319–326

    Article  CAS  Google Scholar 

  174. Chimenti F, Bizzarri B, Bolasco A, Secci D, Chimenti P, Granese A et al (2011) Synthesis and biological evaluation of novel 2,4-disubstituted-1,3-thiazoles as anti-Candida spp. agents. Eur J Med Chem 46:378–382

    Article  CAS  PubMed  Google Scholar 

  175. Stan CD, Tuchiluş C, Stan CI (2002) Echinocandins--new antifungal agents. Rev Med Chir Soc Med Nat Iasi 118:528–536

    Google Scholar 

  176. Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43:1647–1657

    Article  CAS  PubMed  Google Scholar 

  177. Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013:1–13

    Google Scholar 

  178. Vazquez J, Sobel JD (2006) Anidulafungin: a novel echinocandin. Clin Infect Dis 43:215–222

    Article  PubMed  Google Scholar 

  179. Denning DW (2003) New drug classes echinocandin antifungal drugs. Lancet 362:1142–1151

    Article  CAS  PubMed  Google Scholar 

  180. Letscher-Bru V, Herbrecht R (2003) Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother 51:513–521

    Article  CAS  PubMed  Google Scholar 

  181. Chandrasekar PH, Sobel JD (2006) Micafungin: a new echinocandin. Clin Infect Dis 42:1171–1178

    Article  CAS  PubMed  Google Scholar 

  182. Sheng C, Xu H, Wang W, Cao Y, Dong G, Wang S et al (2010) Design, synthesis and antifungal activity of isosteric analogues of benzoheterocyclic N-myristoyltransferase inhibitors. Eur J Med Chem 45:3531–3540

    Article  CAS  PubMed  Google Scholar 

  183. Onnis V, De Logu A, Cocco MT, Fadda R, Meleddu R, Congiu C (2009) 2-Acylhydrazino-5-arylpyrrole derivatives: synthesis and antifungal activity evaluation. Eur J Med Chem 44:1288–1295

    Article  CAS  PubMed  Google Scholar 

  184. Maruoka H, Kashige N, Eishima T, Okabe F, Fujioka T, Miake F et al (2008) Synthesis and antifungal activity of spiro[cyclopropane-1,4′-pyrazol-3-one] derivatives. J Heterocycl Chem 45:1883–1887

    Article  CAS  Google Scholar 

  185. Zheng Q-Z, Cheng K, Zhang X-M, Liu K, Jiao Q-C, Zhu H-L (2010) Synthesis of some N-alkyl substituted urea derivatives as antibacterial and antifungal agents. Eur J Med Chem 45:3207–3212

    Article  CAS  PubMed  Google Scholar 

  186. Ryu C-K, Han J-Y, Jung O-J, Lee S-K, Lee JY, Jeong SH (2005) Synthesis and antifungal activity of noble 5-arylamino- and 6-arylthio-4,7-dioxobenzoselenazoles. Bioorg Med Chem Lett 15:679–682

    Article  CAS  PubMed  Google Scholar 

  187. Ryu C-K, Song AL, Lee JY, Hong JA, Yoon JH, Kim A (2010) Synthesis and antifungal activity of benzofuran-5-ols. Bioorg Med Chem Lett 20:6777–6780

    Article  CAS  PubMed  Google Scholar 

  188. Xu H, Fan L-L (2011) Antifungal agents. Part 4: synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro. Eur J Med Chem 46:364–369

    Article  CAS  PubMed  Google Scholar 

  189. López SN, Castelli MV, Zacchino SA, Domínguez JN, Lobo G, Charris-Charris J et al (2001) In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg Med Chem 9:1999–2013

    Article  PubMed  Google Scholar 

  190. Singh OM, Singh SJ, Devi MB, Devi LN, Singh NI, Lee S-G (2008) Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg Med Chem Lett 18:6462–6467

    Article  CAS  PubMed  Google Scholar 

  191. Ravi Kumar KR, Mallesha H, Basappa, Rangappa KS (2003) Synthesis of novel isoxazolidine derivatives and studies for their antifungal properties. Eur J Med Chem 38:613–619

    Article  CAS  PubMed  Google Scholar 

  192. Zhang F-F, Gan L-L, Zhou C-H (2010) Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg Med Chem Lett 20:1881–1884

    Article  CAS  PubMed  Google Scholar 

  193. Šenel P, Tichotová L, Votruba I, Buchta V, Špulák M, Kuneš J et al (2010) Antifungal 3,5-disubstituted furanones: from 5-acyloxymethyl to 5-alkylidene derivatives. Bioorg Med Chem 18:1988–2000

    Article  PubMed  CAS  Google Scholar 

  194. Yao B, Ji H, Cao Y, Zhou Y, Zhu J, Lü J et al (2007) Synthesis and antifungal activities of novel 2-aminotetralin derivatives. J Med Chem 50:5293–5300

    Article  CAS  PubMed  Google Scholar 

  195. Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768

    Article  CAS  PubMed  Google Scholar 

  196. Rodrigues EG, Dobroff AS, Taborda CP, Travassos LR (2009) Antifungal and antitumor models of bioactive protective peptides. An Acad Bras Cienc 81:503–520

    Article  CAS  PubMed  Google Scholar 

  197. Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972

    Article  CAS  PubMed  Google Scholar 

  198. De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Walsh TJ (1998) Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med Mycol 36:291–298

    Article  PubMed  Google Scholar 

  199. Lee DG, Kim HK, Kim SA, Park Y, Park SC, Jang SH et al (2003) Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem Biophys Res Commun 305:305–310

    Article  CAS  PubMed  Google Scholar 

  200. Raj PA, Edgerton M, Levine MJ (1990) Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem 265:3898–3905

    CAS  PubMed  Google Scholar 

  201. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A A84:5449–5453

    Article  Google Scholar 

  202. Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Scalise G (1999) Antimicrobial activity of polycationic peptides. Peptides 20:1265–1273

    Article  CAS  PubMed  Google Scholar 

  203. Mangoni ML, Grovale N, Giorgi A, Mignogna G, Simmaco M, Barra D (2000) Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides 21:1673–1679

    Article  CAS  PubMed  Google Scholar 

  204. Simmaco M et al (2003) Defense peptides in the amphibian immune system. In: Ascenzi P, Polticelli F, Visca P (eds) Bacterial, plant, and animal toxins. Research Signpost, Kerala

    Google Scholar 

  205. Hancock REW, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149

    Article  CAS  PubMed  Google Scholar 

  206. Pettit RK, Pettit GR, Hazen KC (1998) Specific activities of dolastatin 10 and peptide derivatives against Cryptococcus neoformans. Antimicrob Agents Chemother 42:2961–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Cassone A, Torosantucci A, Boccanera M, Pellengrini G, Palma C, Malavasi G (1988) Production and characterization of a monoclonal antibody to a cell surface, glucomannoprotein constituent of Candida albicans and other pathogenic Candida species. J Med Microbiol 27:233–238

    Article  CAS  PubMed  Google Scholar 

  208. De Wit MYL, Klaster PR (1988) Purification and characterization of a 36kDa antigen of Mycobacterium leprae. J Gen Microbiol 134:1541–1548

    PubMed  Google Scholar 

  209. Chaturvedi AK, Kavishwar A, Shiva Keshava GB, Shukla PK (2005) Monoclonal immunoglobulin G1 directed against Aspergillus fumigatus cell wall glycoprotein protects against experimental murine aspergillosis. Clin Diagn Lab Immunol 12:1063–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Sgro C (1995) Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105:23–29

    Article  CAS  PubMed  Google Scholar 

  211. Kettner SC et al (1999) Use of abciximab-modified thrombelastography in patients undergoing cardiac surgery. Anesth Analg 89:580–584

    CAS  PubMed  Google Scholar 

  212. Zhang Y et al (2014) Daclizumab reduces CD25 levels on T cells through monocyte-mediated trogocytosis. Mult Scler 20:156–164

    Article  CAS  PubMed  Google Scholar 

  213. Borker A, Choudhary N (2011) Rituximab. Indian Pediatr 48:627–632

    Article  PubMed  Google Scholar 

  214. Boekhout AH, Beijnen JH, Schellens JHM (2011) Trastuzumab. Oncologist 16:800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Scott LJ, Lamb HM (1999) Palivizumab. Drugs 58:303–305

    Article  Google Scholar 

  216. Valle E, Gross M, Bickston SJ (2001) Infliximab. Expert Opin Pharmacother 2:1015–1025

    Article  CAS  PubMed  Google Scholar 

  217. Onrust SV, Wiseman LR (1999) Basiliximab. Drugs 57:207–213, discussion 214

    Article  CAS  PubMed  Google Scholar 

  218. McGavin JK, Spencer CM (2001) Gemtuzumab ozogamicin. Drugs 61:1317–1324

    Article  CAS  PubMed  Google Scholar 

  219. Frampton JE, Wagstaff AJ (2003) Alemtuzumab. Drugs 63:1229–1243, discussion 1245–6

    Article  CAS  PubMed  Google Scholar 

  220. Savk E (2007) Efalizumab. Anti-inflamm Anti-Allergy Agents Med Chem 6:205–210

    Article  CAS  Google Scholar 

  221. Mease PJ (2007) Adalimumab in the treatment of arthritis. Ther Clin Risk Manag 3:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Witzig TE et al (2002) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463

    Article  CAS  PubMed  Google Scholar 

  223. Mukherji SK (2010) Bevacizumab (Avastin). AJNR Am J Neuroradiol 31:235–236

    Article  CAS  PubMed  Google Scholar 

  224. Graham J, Muhsin M, Kirkpatrick P (2004) Cetuximab. Nat Rev Drug Discov 3:549–550

    Article  PubMed  Google Scholar 

  225. Corren J et al (2009) Safety and tolerability of omalizumab. Clin Exp Allergy 39:788–797

    Article  CAS  PubMed  Google Scholar 

  226. Selewski DT, Shah GV, Segal BM, Rajdev PA, Mukherji SK (2010) Natalizumab (Tysabri). Am J Neuroradiol 31:1588–1590

    Article  CAS  PubMed  Google Scholar 

  227. Saltz L, Easley C, Kirkpatrick P (2006) Panitumumab. Nat Rev Drug Discov 5:987–988

    Article  CAS  PubMed  Google Scholar 

  228. Blick SK, Keating GM, Wagstaff AJ (2007) Ranibizumab. Drugs 67:1199–1206, discussion 1207–9

    Article  CAS  PubMed  Google Scholar 

  229. Davis J (2008) Eculizumab. Am J Health Syst Pharm 65:1609–1615

    Article  CAS  PubMed  Google Scholar 

  230. Goel N, Stephens S (2010) Certolizumab pegol. MAbs 2:137–147

    Article  PubMed  PubMed Central  Google Scholar 

  231. Cingoz O (2009) Ustekinumab. MAbs 1:216–221

    Article  PubMed  PubMed Central  Google Scholar 

  232. Mazumdar S, Greenwald D (2009) Golimumab. MAbs 1:422–431

    Article  PubMed  PubMed Central  Google Scholar 

  233. Dhimolea E (2010) Canakinumab. MAbs 2:3–13

    Article  PubMed  PubMed Central  Google Scholar 

  234. Keating MJ, Dritselis A, Yasothan U, Kirkpatrick P (2010) Ofatumumab. Nat Rev Drug Discov 9:101–102

    Article  CAS  PubMed  Google Scholar 

  235. Venkiteshwaran A (2009) Tocilizumab. MAbs 1:430–435

    Article  Google Scholar 

  236. Cummings SR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  CAS  PubMed  Google Scholar 

  237. Sondak VK, Smalley KSM, Kudchadkar R, Grippon S, Kirkpatrick P (2011) Ipilimumab. Nat Rev Drug Discov 10:411–412

    Article  CAS  PubMed  Google Scholar 

  238. Sanz I, Yasothan U, Kirkpatrick P (2011) Belimumab. Nat Rev Drug Discov 10:335–336

    Article  CAS  PubMed  Google Scholar 

  239. Ansell SM (2014) Brentuximab vedotin. Blood 124:3197–3200

    Article  CAS  PubMed  Google Scholar 

  240. Zagouri F et al (2013) Pertuzumab in breast cancer: a systematic review. Clin Breast Cancer 13:315–324

    Article  CAS  PubMed  Google Scholar 

  241. Diéras V, Bachelot T (2014) The success story of trastuzumab emtansine, a targeted therapy in HER2-positive breast cancer. Target Oncol 9:111–122

    Article  PubMed  Google Scholar 

  242. Shah A (2014) Obinutuzumab: a novel anti-CD20 monoclonal antibody for previously untreated chronic lymphocytic leukemia. Ann Pharmacother 48:1356–1361

    Article  CAS  PubMed  Google Scholar 

  243. Rhee VF et al (2010) Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman’s disease. J Clin Oncol 28:3701–3708

    Article  PubMed  CAS  Google Scholar 

  244. Mosli MH, Feagan BG (2013) Vedolizumab for Crohn’s disease. Expert Opin Biol Ther 13:455–463

    Article  CAS  PubMed  Google Scholar 

  245. Javle M, Smyth EC, Chau I (2014) Ramucirumab: successfully targeting angiogenesis in gastric cancer. Clin Cancer Res 20:5875–5881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sanford M, McKeage K (2015) Secukinumab: first global approval. Drugs 75:329–338

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shukla, P.K., Singh, P., Yadav, R.K., Pandey, S., Bhunia, S.S. (2016). Past, Present, and Future of Antifungal Drug Development. In: Saxena, A. (eds) Communicable Diseases of the Developing World. Topics in Medicinal Chemistry, vol 29. Springer, Cham. https://doi.org/10.1007/7355_2016_4

Download citation

Publish with us

Policies and ethics