Skip to main content

Microtubules and the Evolution of Mitosis

  • Chapter
  • First Online:
Plant Microtubules

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Abstract

The microtubular cytoskeleton of higher plants diverges considerably from its animal counterpart. This divergence involves a fundamentally different organization with microtubule arrays, which are specific to higher plants, such as cortical microtubules or the phragmoplast. On the other hand, centrioles, which are central organizers of microtubules in cells of animals and lower plants, have been progressively reduced in the course of plant evolution, and are now absent, as in most seed plants. In addition to these structural differences, the molecular composition of associated proteins also deviates to a degree that sequence homologues of important animal microtubule associated proteins (MAPs) seem to be absent in higher plants. The transition towards multicellular plants was intimately linked to rhythmic changes of division axis, and, thus, to the spatial regulation of mitotic microtubule arrays. To understand the peculiarities of plant microtubules, we have to combine cell biology with a more phylogenetic viewpoint. Therefore, this chapter is dedicated to the role of microtubules in the evolution of mitosis. It is shown that the microtubule divergence between plants and animals is already laid down in the prokaryotic ancestors, when the walled eubacteria are compared to the mycoplasms that lack a cell wall. The complex situation in lower eukaryotes can be understood as variations of this theme. The relation between chromatin/nucleus and the so-called nucleus associated organelle (NAO), which organizes microtubules, is central for the realization of mitosis. The extensive variability observed in algae and fungi is then progressively channeled, when, during the evolution of the higher Chlorophyta, most microtubule structures characteristic for higher plants develop. However, the interpretation of these mitotic structures has remained ambiguous, due to possible convergent developments, and due to our limited understanding of the phylogenetic relationships in many taxa of the algae. At the time when plants shifted to a terrestrial lifestyle, the microtubule arrays from higher plants have already been worked out. This was accompanied by a progressive reduction of centriolar functions and the increasing predominance of acentriolar microtubule organization, which could be followed on the structural level and also by a redistribution of microtubule-nucleating proteins, such as γ-tubulin, during recent years. Indicative of the evolutionary processes towards the highly divergent microtubular cytoskeleton of higher plants, interesting evolutionary footprints still exist, and are difficult to interpret merely in terms of cellular function. These include the cytoplasmic occurrence of the tubulin ancestor, FtsZ, in mosses, or the recent discovery of intranuclear tubulin. If one merely attempts to explain them in terms of current function, these phenomena appear to be unusual and difficult to understand. However, they can be readily interpreted as rudiments from a long evolutionary path, driven by the necessity to divide cells that are surrounded by rigid cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addinall SG, Holland B (2002) The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol 318:219–236

    PubMed  CAS  Google Scholar 

  • Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function. Cell 115:705–713

    PubMed  CAS  Google Scholar 

  • Azimzadeh J, Bornens M (2004) The centrosome in evolution. In: Nigg E (ed) Centrosomes in development and disease. Wiley, Weinheim, pp 93–122

    Google Scholar 

  • Balish MF, Krause DC (2006) Mycoplasmas: A distinct cytoskeleton for wall-less bacteria. J Mol Microbiol Biotech 11:244–255

    CAS  Google Scholar 

  • Barnett JR (1991) Microtubules in interphase nuclei of Aesculus hippocastanum L. Ann Bot 68:159–165

    Google Scholar 

  • Beech PL, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR, McFadden GI (2000) Mitochondrial FtsZ in a Chromophyte Alga. Science 287:1276–1279

    PubMed  CAS  Google Scholar 

  • Binarová P, Cenklová V, Hause B, Kubátová E, Lysák M, Doležel J, Bogre L, Dráber P (2000) Nuclear gamma-tubulin during acentriolar plant mitosis. Plant Cell 12:433–442

    PubMed  Google Scholar 

  • Brown RC, Lemmon BE (1990) Polar organizers mark division axis prior to pre-prophase band formation in mitosis of the hepatic Reboulia hemispherica (Bryophyta). Protoplasma 156:74–81

    Google Scholar 

  • Brown RC, Lemmon B, Nguyen H (2002) The microtubule cycle during successive mitotic waves in the syncytial female gametophyte of Ginkgo. J Plant Res 115:491–494

    PubMed  Google Scholar 

  • Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215(1–4):35–49

    PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2006) Polar organizers and girdling bands of microtubules are associated with gamma-tubulin and act in establishment of meiotic quadripolarity in the hepatic Aneura pinguis (Bryophyta). Protoplasma 227:77–85

    PubMed  CAS  Google Scholar 

  • Bünning E (1965) Die Entstehung von Mustern in der Entwicklung von Pflanzen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie vol 15/1. Springer, Berlin, Heidelberg, New York, pp 383–408

    Google Scholar 

  • Cande WZ (1990) Centrosomes: composition and reproduction. Curr Opin Cell Biol 2:301–305

    PubMed  CAS  Google Scholar 

  • Cassimeris L, Spittle C (2001) Regulation of microtubule-associated proteins. Int Rev Cytol 210:163–226

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19–102

    PubMed  Google Scholar 

  • Devos D, Dokudovskaya S, Alber F, Williams R, Chait BT, Sali A, Rout MP (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PloS Biol 2:e380

    PubMed  Google Scholar 

  • Donzelli M, Draetta GF (2003) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4:671–677

    PubMed  CAS  Google Scholar 

  • Doonan JH (1991) The cytoskeleton and moss morphogenesis. In: Lloyd C (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 289–301

    Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert A-M, Schmit AC (2002) The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    PubMed  CAS  Google Scholar 

  • Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65

    PubMed  CAS  Google Scholar 

  • Fu X, Shih YL, Zhang Y, Rothfield LI (2001) The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci USA 98:980–985

    PubMed  CAS  Google Scholar 

  • Fulgosi H, Gerdes L, Westphal S, Glockmann C, Soll J (2002) Cell and chloroplast division requires ARTEMIS. Proc Natl Acad Sci USA 99:11501–11506

    PubMed  CAS  Google Scholar 

  • Garber RC, Aist JR (1979) The ultrastructure of mitosis in Plasmodiophora brassicae (Plasmodiophorales). J Cell Sci 40:89–110

    PubMed  CAS  Google Scholar 

  • Gard DL, Becker BE, Josh Romney S (2004) MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int Rev Cytol 239:179–272

    PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Müller P, Delbarré A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    PubMed  CAS  Google Scholar 

  • Ghosh A, Maniloff J, Gerling DA (1978) Inhibition of mycoplasma cell division by cytochalasin B. Cell 13:57–64

    PubMed  CAS  Google Scholar 

  • Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci USA 101:8643–8648

    PubMed  CAS  Google Scholar 

  • Goto Y, Ueda K (1988) Microfilament bundles of F-actin in Spirogyra observed by fluorescence microscopy. Planta 173:442–446

    Google Scholar 

  • Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66(2):155–178

    PubMed  CAS  Google Scholar 

  • Gueiros-Filho FJ, Losick R (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16:2544–2556

    PubMed  CAS  Google Scholar 

  • Gunning BES, Hardham AR, Hughes JE (1978) Pre-prophase bands of microtubules in all categories of formative and proliferative cell division in Azolla roots. Planta 143:145–160

    Google Scholar 

  • Harper JD, McCurdy DW, Sanders MA, Salisbury JL, John PC (1992) Actin dynamics during the cell cycle in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 22:117–126

    PubMed  CAS  Google Scholar 

  • Hashimoto H (2003) Plastid division: Its origins and evolution. Int Rev Cytol 222:63–98

    PubMed  Google Scholar 

  • Hasselbring BM, Jordan JL, Krause DC (2005) Mutant Analysis Reveals a Specific Requirement for Protein P30 in Mycoplasma pneumoniae Gliding Motility. J Bacteriol 187:6281–6289

    PubMed  CAS  Google Scholar 

  • Hasselbring BM, Jordan JL, Krause RW, Krause DC (2005) Terminal organelle development in the cell wall-less bacterium Mycoplasma pneumoniae. Proc Natl Acad Sci USA 103:16478–16483

    Google Scholar 

  • Heath B (1980) Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis? Int Rev Cytol 64:1–80

    CAS  PubMed  Google Scholar 

  • Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24:4420–4449

    PubMed  CAS  Google Scholar 

  • Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96:14819–14824

    PubMed  CAS  Google Scholar 

  • Kandasamy MK, Deal RB, McKinney EC, Meagher RB (2005) Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41:845–858

    PubMed  CAS  Google Scholar 

  • Kiessling J, Martin A, Gremillon L, Rensing SA, Nick P, Sarnighausen E, Decker EL, Reski R (2004) Dual targeting of plastid division protein FtsZ to chloroplasts and the cytoplasm. EMBO Rep 5:889–894

    PubMed  CAS  Google Scholar 

  • King SM (2002) Dyneins motors on in plants. Traffic 3:930–931

    PubMed  CAS  Google Scholar 

  • Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA et al. (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52

    PubMed  CAS  Google Scholar 

  • Landsverk HB, Kirkhus M, Bollen M, Kuntziger T, Collas P (2005) PNUTS enhances in vitro chromosome decondensation in a PP1-dependent manner. Biochem J 390:709–717

    PubMed  CAS  Google Scholar 

  • Li JJ, Li SA (2006) Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 111:974–984

    PubMed  CAS  Google Scholar 

  • Li JY, Wu CF (2005) New symbiotic hypothesis on the origin of eukaryotic flagella. Naturwissenschaften 92(7):305–309

    PubMed  CAS  Google Scholar 

  • López-Bautista JM, Waters DA, Chapman RL (2003) Phragmoplastin, green algae and the evolution of cytokinesis. Int J Syst Evol Microbiol 53:1715–1718

    PubMed  Google Scholar 

  • López-Garcia P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. BioEssays 28:525–533

    PubMed  Google Scholar 

  • Löwe J, Amos LA (1998) Crystal structure of the bacterial cell division protein FtsZ. Nature 391:203–206

    PubMed  Google Scholar 

  • Maniloff J, Quinlan DC (1974) Partial Purification of a Membrane-Associated Deoxyribonucleic Acid Complex from Mycoplasma gallisepticum. J Bacteriol 120:495–501

    PubMed  CAS  Google Scholar 

  • Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520

    PubMed  CAS  Google Scholar 

  • Mano S, Nakamori C, Kondo M, Hayashi M, Nishimura M (2004) An Arabidopsis dynamin related protein, DRP3A, controls both peroxisomal and mitochondrial division. Plant J 38:487–498

    PubMed  CAS  Google Scholar 

  • Margulis L (1993) Symbiosis and cell evolution. 2nd ed. Freeman WH and Company, New York

    Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17

    PubMed  CAS  Google Scholar 

  • Mattox KR, Steward KD (1984) Cell division in the scaly green flagellate Heteromastix angulata and its bearing on the origin of the Chlorophyceae. Am J Bot 64:931–945

    Google Scholar 

  • Mayer U, Büttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117:149–162

    Google Scholar 

  • Mazumdar M, Misteli T (2005) Chromokinesins: multitalented players in mitosis. Trends Cell Biol 15:349–355

    PubMed  CAS  Google Scholar 

  • Menko AS, Tan KB (1980) Nuclear tubulin of tissue culture cells. Biochim Biophys Acta 629:359–370

    PubMed  CAS  Google Scholar 

  • Meraldi P, McAinsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23

    PubMed  Google Scholar 

  • Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    PubMed  CAS  Google Scholar 

  • Miller ND (1984) Tertiary and quarternary fossils. In: Schuster RM (ed) New Manual of Bryology vol 2. Hattori Bot Lab Nichinan, Miyazaki, pp 1194–1232

    Google Scholar 

  • Miyagishima S, Froehlich JE, Osteryoung KW (2006) PDV1 and PDV2 Mediate Recruitment of the Dynamin-Related Protein ARC5 to the Plastid Division Site. Plant Cell 18:2517–2530

    PubMed  CAS  Google Scholar 

  • Miyagishima S, Nishidaa K, Moria T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A Plant-Specific Dynamin-Related Protein Forms a Ring at the Chloroplast Division Site. Plant Cell 15:655–665

    PubMed  CAS  Google Scholar 

  • Mohr H (1956) Die Abhängigkeit des Protonemenwachstums und der Protonemapolarität bei Farnen vom Licht. Planta 47:121–158

    Google Scholar 

  • Mole-Bajer J, Bajer A (1963) Mitosis in endosperm: techniques of study in vitro. La Cellule 63:400–407

    Google Scholar 

  • Osawa M, Erickson HP (2006) FtsZ from divergent foreign bacteria can function for cell division in Escherichia coli. J Bacteriol 188:7132–7140

    PubMed  CAS  Google Scholar 

  • Osteryoung KW, Nunnari J (2003) The Division of Endosymbiotic Organelles. Science 302:1698–1704

    PubMed  CAS  Google Scholar 

  • Osteryoung KW, Stokes KD, Rutherford SM, Percival AL, Lee WY (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families ith homology to bacterial ftsZ. Plant Cell 10:1991–2004

    PubMed  CAS  Google Scholar 

  • Osteryoung KW, Vierling E (1995) Conserved cell and organelle division. Nature 376:473–474

    PubMed  CAS  Google Scholar 

  • Ovechkina Y, Maddox P, Oakley CE, Xiang X, Osmani SA, Salmon ED, Oakley BR (2003) Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol Biol Cell 14:2192–2200

    PubMed  CAS  Google Scholar 

  • Pennisi E (2004) The Birth of the Nucleus. Science 305:766–768

    PubMed  CAS  Google Scholar 

  • Pereira G, Knop M, Schiebel E (1998) Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Mol Biol Cell 9:775–793

    PubMed  CAS  Google Scholar 

  • Pereira G, Schiebel E (1997) Centrosome-microtubule nucleation. J Cell Sci 110:295–300

    PubMed  CAS  Google Scholar 

  • Pichoff S, Lutkenhaus J (2002) Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J 21:685–693

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Gunning BES, Brown RC, Lemmon BE, Cleary A (1999) The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell division. Am J Bot 86:153–172

    Google Scholar 

  • Queralt E, Lehane C, Novak B, Uhlmann F (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125:719–732

    PubMed  CAS  Google Scholar 

  • Pederson T, Aebi U (2005) Nuclear Actin Extends, with No Contraction in Sight. Molec Biol Cell 16:5055–5060

    PubMed  CAS  Google Scholar 

  • Petroni G, Spring S, Schleifer KH, Ferni F, Rosati G (2000) Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Natl Acad Sci USA 97:1813–1817

    PubMed  CAS  Google Scholar 

  • Raskin DM, de Boer PAJ (1997) The MinE ring: An FtsZ-independent cell structure required for selection of the correct division site in Escherichia coli. Cell 91:685–694

    PubMed  CAS  Google Scholar 

  • Rensing SA, Kiessling J, Reski R, Decker EL (2004) Diversification of ftsZ during early land plant evolution. J Mol Evol 58:154–162

    PubMed  CAS  Google Scholar 

  • Schmit AC, Lambert AM (1988) Plant actin filament and microtubule interactions during anaphase–telophase transition: effects of antagonist drugs. Biol Cell 64:309–319

    PubMed  CAS  Google Scholar 

  • Schwarzerová K, Petrášek J, Panigrahi KCS, Zelenková S, Opatrný Z, Nick P (2006) Intranuclear accumulation of plant tubulin in response to low temperature. Protoplasma 227:185–196

    PubMed  Google Scholar 

  • Seltzer V, Janski N, Canaday J, Herzog E, Erhardt M, Evrard JL, Schmit AC (2007) Arabidopsis GCP2 and GCP3 are part of a soluble γ-tubulin complex and have nuclear envelope targeting domains. Plant J 52:322–331

    PubMed  CAS  Google Scholar 

  • Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa KI, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) Gamma-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    PubMed  CAS  Google Scholar 

  • Steen RL, Beullens M, Landsverk HB, Bollen M, Collas P (2003) AKAP149 is a novel PP1 specifier required to maintain nuclear envelope integrity in G1 phase. J Cell Sci, pp 2237–2246

    Google Scholar 

  • Stoppin-Mellet V, Peter C, Lambert AM (2000) Distribution of gamma-tubulin in higher plant cells: cytosolic gamma-tubulin is part of high molecular weight complexes. Plant Biol 2:290–296

    CAS  Google Scholar 

  • Strepp R, Scolz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373

    PubMed  CAS  Google Scholar 

  • Sun Q, Margolin W (1998) FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180:2050–2056

    PubMed  CAS  Google Scholar 

  • Talcott B, Moore MS (1999) Getting across the nuclear pore complex. Trends Cell Biol 9:312–318

    PubMed  CAS  Google Scholar 

  • Tang X, Wang Y (2006) Pds1/Esp1-dependent and -independent sister chromatid separation in mutants defective for protein phosphatase 2A. Proc Natl Acad Sci USA 103:16290–16295

    PubMed  CAS  Google Scholar 

  • Terol J, Bargues M, Carrasco P, Perez-Alonso M, Paricio N (2002) Molecular characterization and evolution of the protein phosphatase 2A B' regulatory subunit family in plants. Plant Physiol 129:808–822

    PubMed  CAS  Google Scholar 

  • Theißen G, Münster T, Henschel K (2001) Why don't mosses flower? New Phytol 150:1–8

    Google Scholar 

  • Trinkle-Mulcahy L, Lamond AI (2006) Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18:623–631

    PubMed  CAS  Google Scholar 

  • Trinkle-Mulcahy L, Andersen J, Lam YW, Moorhead G, Mann M, Lamond AI (2006) Repo-Man recruits PP1γ to chromatin and is essential for cell viability. J Cell Biol 172:679–692

    PubMed  CAS  Google Scholar 

  • Vagnarelli P, Hudson DF, Ribeiro SA, Trinkle-Mulcahy L, Spence JM, Lai F, Farr CJ, Lamond AI, Earnshaw WC (2006) Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol 8:1133–1142

    PubMed  CAS  Google Scholar 

  • Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW (2003) ARC6 Is a J-Domain Plastid Division Protein and an Evolutionary Descendant of the Cyanobacterial Cell Division Protein Ftn2. Plant Cell 15:1918–1933

    PubMed  CAS  Google Scholar 

  • Vogelmann TC, Bassel AR, Miller JH (1981) Effects of microtubule-inhibitors on nuclear migration and rhizoid formation in germinating fern spores (Onoclea sensibilis). Protoplasma 109:295–316

    CAS  Google Scholar 

  • Wada M, Furuya M (1970) Photocontrol of the orientation of cell division in Adiantum. I. Effects of the dark and red periods in the apical cell of gametophytes. Dev Growth Differ 12:109–118

    PubMed  CAS  Google Scholar 

  • Wallace DC, Morowitz HJ (1973) Genome size and evolution. Chromosoma 40:121–126

    PubMed  CAS  Google Scholar 

  • Walls C, Kreisberg JI, Ludueña RF (1999) Presence of the beta(II) isotype of tubulin in the nuclei of cultured mesangial cells from rat kidney. Cell Motil Cytoskeleton 42:274–284

    Google Scholar 

  • Walls-Bass C, Kreisberg JI, Ludueña RF (2003) Effect of the antitumor drug vinblastine on nuclear bet(II)-tubulin in rat kidney mesangial cells. Invest New Drug 21:15–20

    Google Scholar 

  • Wickstead B, Gull K (2007) Dyneins accross Eukaryotes: a comparative genomic analysis. Traffic 8:1708–1721

    PubMed  CAS  Google Scholar 

  • Wordeman L (2005) Microtubule-depolymerizing kinesins. Curr Opin Cell Biol 17:82–88

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Nozaki H, Kawano S (2001) Evolutionary relationhips among multiple modes of cell division in the genus Nannochloris (Chlorophyta) revealed by genome size, actin gene multiplicity and phylogeny. J Phycol 37:106–120

    CAS  Google Scholar 

  • Yoshida T, Maki M, Okamoto H, Hiroishi S (2005) Coordination of DNA replication and cell division in Cyanobacteria Microcystis aeruginosa. FEMS Microbiol Lett 251:149–154

    PubMed  CAS  Google Scholar 

  • Zepf E (1952) Über die Differenzierung des Sphagnumblatts. Z Bot 40:87–118

    Google Scholar 

  • Zimmermann W, Heller H (1956) Polarität und Brutknospenentwicklung bei Sphacelaria. Pubbl Staz zool Napoli 28:289–304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nick .

Editor information

Peter Nick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmit, AC., Nick, P. (2008). Microtubules and the Evolution of Mitosis. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_161

Download citation

Publish with us

Policies and ethics