Skip to main content

Synthesis of Peptidomimetics Through the Disrupted Ugi Reaction with Aziridine Aldehyde Dimers

  • Chapter
  • First Online:
Peptidomimetics II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 49))

  • 838 Accesses

Abstract

Aziridine aldehydes and isocyanides participate in a multicomponent reaction with amino acids or peptides. The reaction differs from a conventional Ugi reaction by virtue of the pendent aziridine nucleophile, which intercepts the mixed anhydride intermediate to deliver aziridine amide-containing piperazinones and peptide macrocycles for the respective reactions with amino acids and peptides. The diastereoselectivity of the process depends on the substitution of the amine component, and opposite diastereoselectivity was observed with primary versus secondary amino acids. The aziridine embedded within the piperazinone or cyclic peptides has been used for further transformation and diversification of products through nucleophilic ring opening with thiols, thioacids, and azides, as well as hydrogenolysis. The ring-opened products possess distinct structural organization elements, which have been used to develop rigid scaffolds with increased passive cellular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruijter E, Scheffelaar R, Orru RVA (2011) Multicomponent reaction design in the quest for molecular complexity and diversity. Angew Chem Int Ed 50:6234–6246. doi:10.1002/anie.201006515

    Article  CAS  Google Scholar 

  2. Ganem B (2009) Strategies for innovation in multicomponent reaction design. Acc Chem Res 42:463–472. doi:10.1021/ar800214s

    Article  CAS  Google Scholar 

  3. Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery. From xylocain to crixivan. Curr Med Chem 10:51–80

    Article  CAS  Google Scholar 

  4. Shiers JJ, Clarkson GJ, Shipman M, Hayes JF (2006) Rapid generation of molecular complexity using “hybrid” multi-component reactions (MCRs): application to the synthesis of alpha-amino nitriles and 1,2-diamines. Chem Commun 2:649–651. doi:10.1039/b516192d

    Article  CAS  Google Scholar 

  5. Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed 37:1044–1070. doi:10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E

    Article  Google Scholar 

  6. Wang J, Liu X, Feng X (2011) Asymmetric strecker reactions. Chem Rev 111:6947–6983. doi:10.1021/cr200057t

    Article  CAS  Google Scholar 

  7. Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Ann Chem Pharm 75:27–45. doi:10.1002/jlac.18500750103

    Article  Google Scholar 

  8. He Z, Zajdlik A, Yudin AK (2014) Air- and moisture-stable amphoteric molecules: enabling reagents in synthesis. Acc Chem Res 47:1029–1040. doi:10.1021/ar400210c

    Article  CAS  Google Scholar 

  9. Afagh NA, Yudin AK (2010) Chemoselectivity and the curious reactivity preferences of functional groups. Angew Chem Int Ed 49:262–310. doi:10.1002/anie.200901317

    Article  CAS  Google Scholar 

  10. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U

    Article  Google Scholar 

  11. Ramozzi R, Chéron N, Braïda B, Hiberty PC, Fleurat-Lessard P (2012) A valence bond view of isocyanides’ electronic structure. New J Chem 36:1137–1140. doi:10.1039/c2nj40050b

    Article  CAS  Google Scholar 

  12. Moss GP, Smith PAS, Tavernier D (1995) Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995). Pure Appl Chem 67:1307–1375. doi:10.1351/pac199567081307

    Google Scholar 

  13. Passerini M, Simone L (1921) Gazz Chim Ital 51:181–189

    CAS  Google Scholar 

  14. Passerini M, Simone L (1921) Gazz Chim Ital 51:126–129

    CAS  Google Scholar 

  15. Maeda S, Komagawa S, Uchiyama M, Morokuma K (2011) Finding reaction pathways for multicomponent reactions: the Passerini reaction is a four-component reaction. Angew Chem Int Ed 50:644–649. doi:10.1002/anie.201005336

    Article  CAS  Google Scholar 

  16. Ugi I (1962) The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed 1:8–21. doi:10.1002/anie.196200081

    Article  Google Scholar 

  17. Ugi I, Meyr R, Fetzer U, Steinbrückner C (1959) Versuche mit isonitrilen. Angew Chem Int Ed 71:386

    Google Scholar 

  18. Endo A, Yanagisawa A, Abe M, Tohma S, Kan T, Fukuyama T (2002) Total synthesis of ecteinascidin 743. J Am Chem Soc 124:6552–6554. doi:10.1021/ja026216d

    Article  CAS  Google Scholar 

  19. Tsukuda T, Suda A, Ohta A, Sudoh M, Shimma N (2001) Combinatorial synthesis of nikkomycin analogues on solid support. Heterocycles 55:1023. doi:10.3987/COM-01-9222

    Article  Google Scholar 

  20. Bauer SM, Armstrong RW (1999) Total synthesis of motuporin (nodularin-V). J Am Chem Soc 121:6355–6366. doi:10.1021/ja9811243

    Article  CAS  Google Scholar 

  21. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res 29:123–131. doi:10.1021/ar9502083

    Article  CAS  Google Scholar 

  22. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114:8323–8359. doi:10.1021/cr400615v

    Article  CAS  Google Scholar 

  23. Koopmanschap G, Ruijter E, Orru RV (2014) Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 10:544–598. doi:10.3762/bjoc.10.50

    Article  CAS  Google Scholar 

  24. Ayaz M, De Moliner F, Dietrich J, Hulme C (2012) Applications of isocyanides in IMCR s for the rapid generation of molecular diversity. In: Nenajdenko VG (ed) Isocyanide chemistry. Wiley-VCH, Weinheim, pp 335–384

    Chapter  Google Scholar 

  25. Hulme C, Dietrich J (2009) Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. Mol Divers 13:195–207. doi:10.1007/s11030-009-9111-6

    Article  CAS  Google Scholar 

  26. Hulme C, Gore V (2003) Multi-component reactions : emerging chemistry in drug discovery. From xylocain to crixivan. Curr Med Chem 10:51–80. doi:10.2174/0929867033368600

    Article  CAS  Google Scholar 

  27. Demharter A, Hörl W, Herdtweck E, Ugi I (1996) Synthesis of chiral 1,1′-iminodicarboxylic acid derivatives from α-amino acids, aldehydes, isocyanides, and alcohols by the diastereoselective five-center–four-component reaction. Angew Chem Int Ed 35:173–175. doi:10.1002/anie.199601731

    Article  CAS  Google Scholar 

  28. Park SJ, Keum G, Kang SB, Koh HY, Kim Y, Lee DH (1998) A facile synthesis of N-carbamoylmethyl- α -aminobutyrolactones by the Ugi multicomponent condensation reaction. Tetrahedron Lett 39:7109–7112. doi:10.1016/S0040-4039(98)01509-3

    Article  CAS  Google Scholar 

  29. Layer RW (1963) The chemistry of imines. Chem Rev 63:489–510. doi:10.1021/cr60225a003

    Article  CAS  Google Scholar 

  30. Myers AG, Kung DW, Zhong B (2000) Observations concerning the existence and reactivity of free α-amino aldehydes as chemical intermediates: evidence for epimerization-free adduct formation with various nucleophiles. J Am Chem Soc 122:3236–3237. doi:10.1021/ja000136x

    Article  CAS  Google Scholar 

  31. Fischer E, Leuchs H (1903) Synthese desd-Glucosamins. Ber Dtsch Chem Ges 36:24–29. doi:10.1002/cber.19030360109

    Article  CAS  Google Scholar 

  32. Donohoe TJ, Brian PM, Hargaden GC, O’Riordan TJC (2010) Synthesis of cylindricine C and a formal synthesis of cylindricine A. Tetrahedron 66:6411–6420. doi:10.1016/j.tet.2010.05.044

    Article  CAS  Google Scholar 

  33. Fu P, Snapper ML, Hoveyda AH (2008) Catalytic asymmetric alkylations of ketoimines. Enantioselective synthesis of N-substituted quaternary carbon stereogenic centers by Zr-catalyzed additions of dialkylzinc reagents to aryl-, alkyl-, and trifluoroalkyl-substituted ketoimines. J Am Chem Soc 130:5530–5541. doi:10.1021/ja8001343

    Article  CAS  Google Scholar 

  34. Ota H, Chyouma T, Iso S, Satoh T (2004) A novel synthesis of cyclic α-amino aldehydes, amino alcohols, and α-amino acid methyl esters from cyclic ketones through sulfinylaziridines. Tetrahedron Lett 45:3903–3907. doi:10.1016/j.tetlet.2004.03.124

    Article  CAS  Google Scholar 

  35. Ooi T, Saito A, Maruoka K (2003) Asymmetric skeletal rearrangement of symmetrically alpha, alpha-disubstituted alpha-amino aldehydes: a new entry to optically active alpha-hydroxy ketones. J Am Chem Soc 125:3220–3221. doi:10.1021/ja0292851

    Article  CAS  Google Scholar 

  36. De Kimpe N, Boeykens M, Boelens M, De Buck K, Cornelis J (1992) Synthesis of 2(N-Alkylamino)Isobutyraldehydes. Org Prep Proced Int 24:679–681. doi:10.1080/00304949209356245

    Article  Google Scholar 

  37. Satoh T, Oohara T, Ueda Y, Yamakawa K (1989) .alpha.,.beta.-Epoxy sulfoxides as useful intermediates in organic synthesis. 21. A novel approach to the asymmetric synthesis of epoxides, allylic alcohols, .alpha.-amino ketones, and .alpha.-amino aldehydes from carbonyl compounds through .alpha.,.beta. J Org Chem 54:3130–3136. doi:10.1021/jo00274a032

    Article  CAS  Google Scholar 

  38. Hili R, Yudin AK (2006) Readily available unprotected amino aldehydes. J Am Chem Soc 128:14772–14773. doi:10.1021/ja065898s

    Article  CAS  Google Scholar 

  39. Assem N, Hili R, He Z, Kasahara T, Inman BL, Decker S, Yudin AK (2012) Role of reversible dimerization in reactions of amphoteric aziridine aldehydes. J Org Chem 77:5613–5623. doi:10.1021/jo3007418

    Article  CAS  Google Scholar 

  40. Hili R, Yudin AK (2008) Amphoteric amino aldehydes enable rapid assembly of unprotected amino alcohols. Angew Chem Int Ed 47:4188–4191. doi:10.1002/anie.200705776

    Article  CAS  Google Scholar 

  41. Hili R, Yudin AK (2009) Amphoteric amino aldehydes reroute the aza-Michael reaction. J Am Chem Soc 131:16404–16406. doi:10.1021/ja9072194

    Article  CAS  Google Scholar 

  42. Assem N, Natarajan A, Yudin AK (2010) Chemoselective peptidomimetic ligation using thioacid peptides and aziridine templates. J Am Chem Soc 132:10986–10987. doi:10.1021/ja104488d

    Article  CAS  Google Scholar 

  43. Dawson P, Muir T, Clark-Lewis I, Kent S (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779. doi:10.1126/science.7973629

    Article  CAS  Google Scholar 

  44. Dawson PE (2011) Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Isr J Chem 51:862–867. doi:10.1002/ijch.201100128

    Article  CAS  Google Scholar 

  45. Watkins HA, Au M, Hay DL (2012) The structure of secretin family GPCR peptide ligands: implications for receptor pharmacology and drug development. Drug Discov Today 17:1006–1014. doi:10.1016/j.drudis.2012.05.005

    Article  CAS  Google Scholar 

  46. Schiller PW (2010) Bi- or multifunctional opioid peptide drugs. Life Sci 86:598–603. doi:10.1016/j.lfs.2009.02.025

    Article  CAS  Google Scholar 

  47. Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS One 3:e2524. doi:10.1371/journal.pone.0002524

    Article  CAS  Google Scholar 

  48. Wu C, Ma MH, Brown KR, Geisler M, Li L, Tzeng E, Jia CYH, Jurisica I, Li SS-C (2007) Systematic identification of SH3 domain-mediated human protein-protein interactions by peptide array target screening. Proteomics 7:1775–1785. doi:10.1002/pmic.200601006

    Article  CAS  Google Scholar 

  49. Wavreille A, Garaud M, Zhang Y, Pei D (2007) Defining SH2 domain and PTP specificity by screening combinatorial peptide libraries. Methods 42:207–219. doi:10.1016/j.ymeth.2007.02.010

    Article  CAS  Google Scholar 

  50. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147. doi:10.1111/cbdd.12055

    Article  CAS  Google Scholar 

  51. Marsault E, Peterson ML (2011) Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J Med Chem 54:1961–2004. doi:10.1021/jm1012374

    Article  CAS  Google Scholar 

  52. Madala PK, Tyndall JDA, Nall T, Fairlie DP (2010) Update 1 of: proteases universally recognize beta strands in their active sites. Chem Rev 110:PR1–PR31. doi:10.1021/cr900368a

    Article  CAS  Google Scholar 

  53. Hill TA, Lohman R, Hoang HN, Nielsen DS, Scully CCG, Kok WM, Liu L, Lucke AJ, Stoermer MJ, Schroeder CI, Chaousis S, Colless B, Bernhardt PV, Edmonds DJ, Griffith DA, Rotter CJ, Ruggeri RB, Price DA, Liras S, Craik DJ, Fairlie DP (2014) Cyclic penta- and hexaleucine peptides without N-methylation are orally absorbed. ACS Med Chem Lett 5:1148–1151. doi:10.1021/ml5002823

    Article  CAS  Google Scholar 

  54. Chatterjee J, Gilon C, Hoffman A, Kessler H (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–1342. doi:10.1021/ar8000603

    Article  CAS  Google Scholar 

  55. Yudin AK (2015) Macrocycles: lessons from the distant past, recent developments, and future directions. Chem Sci 6:30–49. doi:10.1039/C4SC03089C

    Article  CAS  Google Scholar 

  56. Terrett NK (2010) Methods for the synthesis of macrocycle libraries for drug discovery. Drug Discov Today Technol 7:e95–e146. doi:10.1016/j.ddtec.2010.06.002

    Article  CAS  Google Scholar 

  57. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524. doi:10.1038/nchem.1062

    Article  CAS  Google Scholar 

  58. Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9:471–501. doi:10.1002/psc.491

    Article  CAS  Google Scholar 

  59. Schmidt U, Langner J (1997) Cyclotetrapeptides and cyclopentapeptides: occurrence and synthesis. J Pept Res 49:67–73. doi:10.1111/j.1399-3011.1997.tb01122.x

    Article  CAS  Google Scholar 

  60. Wessjohann L, Rhoden C, Rivera D, Vercillo OE (2010) Cyclic peptidomimetics and pseudopeptides from multicomponent reactions. In: Orru RVA, Ruijter E (eds) Topics in heterocyclic chemistry. Springer, Berlin, pp 199–226

    Google Scholar 

  61. Wessjohann LA, Rivera DG, Vercillo OE (2009) Multiple multicomponent macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem Rev 109:796–814. doi:10.1021/cr8003407

    Article  CAS  Google Scholar 

  62. Failli A, Immer H, Götz M (1979) The synthesis of cyclic peptides by the four component condensation (4 CC). Can J Chem 57:3257–3261. doi:10.1139/v79-533

    Article  CAS  Google Scholar 

  63. Barreto A d FS, Vercillo OE, Wessjohann LA, Andrade CKZ (2014) Consecutive isocyanide-based multicomponent reactions: synthesis of cyclic pentadepsipeptoids. Beilstein J Org Chem 10:1017–1022. doi:10.3762/bjoc.10.101

    Article  CAS  Google Scholar 

  64. Seo J, Lee B, Zuckermann R (2011) Peptoids – synthesis, characterization, and nanostructures. Compr Biomater 2:53–76

    Article  Google Scholar 

  65. Yoo B, Shin SBY, Huang ML, Kirshenbaum K (2010) Peptoid macrocycles: making the rounds with peptidomimetic oligomers. Chem Eur J 16:5528–5537. doi:10.1002/chem.200903549

    Article  CAS  Google Scholar 

  66. Vercillo OE, Andrade CKZ, Wessjohann LA (2008) Design and synthesis of cyclic RGD pentapeptoids by consecutive Ugi reactions. Org Lett 10:205–208. doi:10.1021/ol702521g

    Article  CAS  Google Scholar 

  67. Wessjohann LA, Ruijter E (2005) Macrocycles rapidly produced by multiple multicomponent reactions including bifunctional building blocks (MiBs). Mol Divers 9:159–169. doi:10.1007/s11030-005-1313-y

    Article  CAS  Google Scholar 

  68. Wessjohann LA, Voigt B, Rivera DG (2005) Diversity oriented one-pot synthesis of complex macrocycles: very large steroid-peptoid hybrids from multiple multicomponent reactions including bifunctional building blocks. Angew Chem Int Ed 44:4785–4790. doi:10.1002/anie.200500019

    Article  CAS  Google Scholar 

  69. Ricardo MG, Morales FE, Garay H, Reyes O, Vasilev D, Wessjohann LA, Rivera DG (2015) Bidirectional macrocyclization of peptides by double multicomponent reactions. Org Biomol Chem 13:438–446. doi:10.1039/c4ob01915f

    Article  CAS  Google Scholar 

  70. Wessjohann LA, Westermann B, Michalik D, Schaks A, Kreye O, Wagner C, Merzweiler K (2007) Natural product inspired meta/para’-biaryl ether lactam macrocycles by double Ugi multicomponent reactions. Heterocycles 73:863. doi:10.3987/COM-07-S(U)21

    Article  Google Scholar 

  71. Michalik D, Schaks A, Wessjohann LA (2007) One-step synthesis of natural product-inspired biaryl ether-cyclopeptoid macrocycles by double Ugi multiple-component reactions of bifunctional building blocks. Eur J Org Chem 2007:149–157. doi:10.1002/ejoc.200600354

    Article  CAS  Google Scholar 

  72. Rivera DG, Wessjohann LA (2009) Architectural chemistry: synthesis of topologically diverse macromulticycles by sequential multiple multicomponent macrocyclizations. J Am Chem Soc 131:3721–3732. doi:10.1021/ja809005k

    Article  CAS  Google Scholar 

  73. Rivera DG, Pando O, Bosch R, Wessjohann LA (2008) A biomimetic approach for polyfunctional secocholanes: tuning flexibility and functionality on peptidic and macrocyclic scaffolds derived from bile acids. J Org Chem 73:6229–6238. doi:10.1021/jo800708m

    Article  CAS  Google Scholar 

  74. Rivera DG, Wessjohann LA (2006) Supramolecular compounds from multiple Ugi multicomponent macrocyclizations: peptoid-based cryptands, cages, and cryptophanes. J Am Chem Soc 128:7122–7123. doi:10.1021/ja060720r

    Article  CAS  Google Scholar 

  75. Wessjohann LA, Filho RAWN, Rivera DG (2012) In: Nenajdenko VG (ed) Isocyanide chemistry. Wiley-VCH, Weinheim, pp 233–262

    Chapter  Google Scholar 

  76. Rotstein BH, Yudin AK (2012) Aziridine-2-carboxaldehyde dimers undergo homo-Ugi 4-component-5-center reactions. Synthesis 44:2851–2858. doi:10.1055/s-0030-1260261

    Article  CAS  Google Scholar 

  77. Hili R, Rai V, Yudin AK (2010) Macrocyclization of linear peptides enabled by amphoteric molecules. J Am Chem Soc 132:2889–2891. doi:10.1021/ja910544p

    Article  CAS  Google Scholar 

  78. Mata L, Avenoza A, Busto JH, Peregrina JM (2013) Chemoselectivity control in the reactions of 1,2-cyclic sulfamidates with amines. Chem Eur J 19:6831–6839. doi:10.1002/chem.201204392

    Article  CAS  Google Scholar 

  79. Jang JI, Kang SY, Kang KH, Park YS (2011) Dynamic resolution of α-halo chiral esters for the synthesis of 3-substituted piperazin-2-ones. Tetrahedron 67:6221–6226. doi:10.1016/j.tet.2011.06.055

    Article  CAS  Google Scholar 

  80. Pollini GP, Baricordi N, Benetti S, De Risi C, Zanirato V (2005) A simple entry to chiral non-racemic 2-piperazinone derivatives. Tetrahedron Lett 46:3699–3701. doi:10.1016/j.tetlet.2005.03.163

    Article  CAS  Google Scholar 

  81. Dinsmore CJ, Beshore DC (2009) Synthesis and transformations of piperazinone rings. A review. Org Prep Proced Int 34:367–404. doi:10.1080/00304940209458075

    Article  Google Scholar 

  82. Zaretsky S, Adachi S, Rotstein BH, Hickey JL, Scully CCG, St. Denis JD, Courtemanche R, Yu JCY, Chung BKW, Yudin AK (2014) Stereocontrolled disruption of the Ugi reaction toward the production of chiral piperazinones: substrate scope and process development. J Org Chem 79:9948–9957. doi:10.1021/jo5018316

    Article  CAS  Google Scholar 

  83. Belding L, Zaretsky S, Rotstein BH, Yudin AK, Dudding T (2014) Shifting the energy landscape of multicomponent reactions using aziridine aldehyde dimers: a mechanistic study. J Org Chem 79:9465–9471. doi:10.1021/jo501242r

    Article  CAS  Google Scholar 

  84. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  85. Perdew JP, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687. doi:10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  86. Rotstein BH, Rai V, Hili R, Yudin AK (2010) Synthesis of peptide macrocycles using unprotected amino aldehydes. Nat Protoc 5:1813–1822. doi:10.1038/nprot.2010.127

    Article  CAS  Google Scholar 

  87. Scully CCG, Rai V, Poda G, Zaretsky S, Burns DC, Houliston RS, Lou T, Yudin AK (2012) Bending rigid molecular rods: formation of oligoproline macrocycles. Chem Eur J 18:15612–15617. doi:10.1002/chem.201203266

    Article  CAS  Google Scholar 

  88. Londregan AT, Farley KA, Limberakis C, Mullins PB, Piotrowski DW (2012) A new and useful method for the macrocyclization of linear peptides. Org Lett 14:2890–2893. doi:10.1021/ol301173m

    Article  CAS  Google Scholar 

  89. Zaretsky S, Hickey JL, Tan J, Pichugin D, St. Denis MA, Ler S, Chung BKW, Scully CCG, Yudin AK (2015) Mechanistic investigation of aziridine aldehyde-driven peptide macrocyclization: the imidoanhydride pathway. Chem Sci 6:5446–5455. doi:10.1039/C5SC01958C

    Article  CAS  Google Scholar 

  90. Rotstein BH, Mourtada R, Kelley SO, Yudin AK (2011) Solvatochromic reagents for multicomponent reactions and their utility in the development of cell-permeable macrocyclic peptide vectors. Chem Eur J 17:12257–12261. doi:10.1002/chem.201102096

    Article  CAS  Google Scholar 

  91. Yousif LF, Stewart KM, Horton KL, Kelley SO (2009) Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem 10:2081–2088. doi:10.1002/cbic.200900017

    Article  CAS  Google Scholar 

  92. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO (2008) Mitochondria-penetrating peptides. Chem Biol 15:375–382. doi:10.1016/j.chembiol.2008.03.015

    Article  CAS  Google Scholar 

  93. Rotstein BH, Winternheimer DJ, Yin LM, Deber CM, Yudin AK (2012) Thioester-isocyanides: versatile reagents for the synthesis of cycle-tail peptides. Chem Commun 48:3775–3777. doi:10.1039/c2cc16027g

    Article  CAS  Google Scholar 

  94. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960. doi:10.1146/annurev.biochem.69.1.923

    Article  CAS  Google Scholar 

  95. Roxin A, Chen J, Scully CCG, Rotstein BH, Yudin AK, Zheng G (2012) Conformational modulation of in vitro activity of cyclic RGD peptides via aziridine aldehyde-driven macrocyclization chemistry. Bioconjug Chem 23:1387–1395. doi:10.1021/bc300239a

    Article  CAS  Google Scholar 

  96. Zaretsky S, Tan J, Hickey JL, Yudin AK (2015) Macrocyclic templates for library synthesis of peptido-conjugates. In: Derda R (ed) Methods in molecular biology: peptide libraries. Springer, New York, pp 67–68

    Chapter  Google Scholar 

  97. Chung BKW, Hickey JL, Scully CCG, Zaretsky S, Yudin AK (2013) Bicycle synthesis through peptide macrocyclization using aziridine aldehydes followed by late stage disulfide bond installation. Medchemcomm 4:1124. doi:10.1039/c3md00054k

    Article  CAS  Google Scholar 

  98. Zaretsky S, Scully CCG, Lough AJ, Yudin AK (2013) Exocyclic control of turn induction in macrocyclic peptide scaffolds. Chem Eur J 19:17668–17672. doi:10.1002/chem.201303453

    Article  CAS  Google Scholar 

  99. Zaretsky S, Hickey JL, St. Denis MA, Scully CCG, Roughton AL, Tantillo DJ, Lodewyk MW, Yudin AK (2014) Predicting cyclic peptide chemical shifts using quantum mechanical calculations. Tetrahedron 70:7655–7663. doi:10.1016/j.tet.2014.07.070

    Article  CAS  Google Scholar 

  100. Zhou P, Chen B, Davis F (2006) Asymmetric syntheses with aziridinecarboxylate and aziridinephosphonate building blocks. In: Yudin AK (ed) Aziridines and epoxides in organic synthesis. Wiley-VCH, Weinheim, pp 73–115

    Chapter  Google Scholar 

  101. Xiong C, Wang W, Cai C, Hruby VJ (2002) Regioselective and stereoselective nucleophilic ring opening reactions of a phenyl-substituted aziridine: enantioselective synthesis of β-substituted tryptophan, cysteine, and serine derivatives. J Org Chem 67:1399–1402. doi:10.1021/jo010860d

    Article  CAS  Google Scholar 

  102. Davis FA, Deng J, Zhang Y, Haltiwanger RC (2002) Aziridine-mediated asymmetric synthesis of quaternary β-amino acids using 2H-azirine 2-carboxylate esters. Tetrahedron 58:7135–7143. doi:10.1016/S0040-4020(02)00727-5

    Article  CAS  Google Scholar 

  103. Glover SA, Rosser AA (2012) Reliable determination of amidicity in acyclic amides and lactams. J Org Chem 77:5492–5502. doi:10.1021/jo300347k

    Article  CAS  Google Scholar 

  104. Shao H, Jiang X, Gantzel P, Goodman M (1994) Tilted amides in amino acid and peptide derivatives. Chem Biol 1:231–234. doi:10.1016/1074-5521(94)90015-9

    Article  CAS  Google Scholar 

  105. Hermkens PHH, Ottenheijm HCJ, Rees D (1996) Solid-phase organic reactions: a review of the recent literature. Tetrahedron 52:4527–4554. doi:10.1016/0040-4020(96)00216-5

    Article  CAS  Google Scholar 

  106. Drewry D, Coe D, Poon S (1999) Solid-supported reagents in organic synthesis. Med Res Rev 19:97–148. doi:10.1002/(SICI)1098-1128(199903)19:2<97::AID-MED2>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  107. Nandy JP, Prakesch M, Khadem S, Reddy PT, Sharma U, Arya P (2009) Advances in solution- and solid-phase synthesis toward the generation of natural product-like libraries. Chem Rev 109:1999–2060. doi:10.1021/cr800188v

    Article  CAS  Google Scholar 

  108. Hall DG, Manku S, Wang F (2001) Solution- and solid-phase strategies for the design, synthesis, and screening of libraries based on natural product templates: a comprehensive survey. J Comb Chem 3:125–150. doi:10.1021/cc0001001

    Article  CAS  Google Scholar 

  109. Dax SL, McNally JJ, Youngman MA (1999) Multi-component methodologies in solid-phase organic synthesis. Curr Med Chem 6:255–270

    CAS  Google Scholar 

  110. Treder AP, Tremblay M, Yudin AK, Marsault E (2014) Solid-phase synthesis of piperazinones via disrupted Ugi condensation. Org Lett 16:4674–4677. doi:10.1021/ol5023118

    Article  CAS  Google Scholar 

  111. Treder AP, Hickey JL, Tremblay M-CJ, Zaretsky S, Scully CCG, Mancuso J, Doucet A, Yudin AK, Marsault E (2015) Solid-phase parallel synthesis of functionalised medium-to-large cyclic peptidomimetics through three-component coupling driven by aziridine aldehyde dimers. Chem Eur J 21:9249–9255. doi:10.1002/chem.201500068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei K. Yudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaretsky, S., Yudin, A.K. (2015). Synthesis of Peptidomimetics Through the Disrupted Ugi Reaction with Aziridine Aldehyde Dimers. In: Lubell, W. (eds) Peptidomimetics II. Topics in Heterocyclic Chemistry, vol 49. Springer, Cham. https://doi.org/10.1007/7081_2015_187

Download citation

Publish with us

Policies and ethics