Skip to main content

Guanidine Metal Complexes for Bioinorganic Chemistry and Polymerisation Catalysis

  • Chapter
  • First Online:
Guanidines as Reagents and Catalysts II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 51))

Abstract

Guanidines are highly useful ligands which have conquered coordination chemistry within the last 20 years. Their CN3 moiety allows multiple substitution patterns which enables tailoring them to a large variety of applications, ranging from bioinorganic coordination chemistry via medicinal chemistry to polymerisation catalysis. In bioinorganic chemistry, guanidines gave important stimuli in the modelling of copper type 1, 2 and 3 enzymes. This review provides with a comprehensive overview on complexes which have been reported with neutral guanidine ligands. Peralkylated guanidines as well as bicyclic or more complex guanidine-comprising entities are described in their coordination chemistry with transition and main-group metals. The structural features of the complexes as well as their most prominent features in bioinorganic chemistry or polymerisation catalysis are highlighted. Hereby, the role of the delocalisation of the positive charge within the guanidine unit gained during coordination is discussed in its importance for efficient and robust coordination. The delocalisation within the CN3 unit can be measured by the structural value ρ which is discussed for numerous systems. The charge delocalisation makes neutral guanidines versatile and efficient for the stabilisation of highly different coordination modes and a large variety of oxidation states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATRP:

Atom transfer radical polymerisation

DβM:

Dopamine β-monooxygenase

Fc*:

Decamethylferrocene

LMCT:

Ligand to metal charge transfer

MLCT:

Metal to ligand charge transfer

PD:

Polydispersity

PhIO:

Iodosylbenzene

sPhIO:

2-(tert-butylsulfonyl)-iodosylbenzene

PHM:

Peptidylglycine α-hydroxylating monooxygenase

ROP:

Ring-opening polymerisation

TEMPO:

2,2,6,6-Tetramethylpiperidyl-1-oxyl

XAS:

X-ray absorption spectroscopy

References

  1. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114:3659–3853

    Article  CAS  Google Scholar 

  2. Bailey PJ, Pace S (2001) The coordination chemistry of guanidines and guanidinates. Coord Chem Rev 214:91–141

    Article  CAS  Google Scholar 

  3. Edelmann FT (2008) Advances in the coordination chemistry of amidinate and guanidinate ligands. In: Hill AF, Fink MJ (eds) Advances in organometallic chemistry, vol 57. Elsevier, Oxford, pp 183–352

    Google Scholar 

  4. Edelmann FT (2013) Recent progress in the chemistry of metal amidinates and guanidinates: syntheses, catalysis and materials. In: Hill AF, Fink MJ (eds) Advances in organometallic chemistry, vol 61. Elsevier, Oxford, pp 55–374

    Google Scholar 

  5. Wu X, Tamm M (2014) Transition metal complexes supported by highly basic imidazolin-2-iminato and imidazolin-2-imine N-donor ligands. Coord Chem Rev 260:116–138

    Article  CAS  Google Scholar 

  6. Zhang W-X, Xua L, Xi Z (2015) Recent development of synthetic preparation methods for guanidines via transition metal catalysis. Chem Commun 51:254–265

    Article  Google Scholar 

  7. Elorriaga D, Carrillo-Hermosilla F, Antinolo A, Suarez FJ, Lopez-Solera I, Fernandez-Galan R, Villaseno E (2013) Asymmetric niobium guanidinates as intermediates in the catalytic guanylation of amines. Dalton Trans 42:8223–8230

    Article  CAS  Google Scholar 

  8. Gobbi A, Frenking G (1993) Y-conjugated compounds: the equilibrium geometries and electronic structures of guanidine, guanidinium cation, urea, and 1,1-diaminoethylene. J Am Chem Soc 115:2362–2372

    Article  CAS  Google Scholar 

  9. Sundermeyer J, Raab V, Gaoutchenova E, Garrelts U, Abicilar N, Harms K (1990) The chemistry of superbasic guanidines. In: Bolm C, Hahn FE (eds) Activating unreactive substrates: the role of secondary interactions. Wiley, Weinheim, pp 17–35

    Google Scholar 

  10. Schwesinger R (1990) Starke ungeladene Stickstoffbasen. Nachr Chem Tech Lab 38:1214–1226

    Article  CAS  Google Scholar 

  11. Raab V, Harms K, Sundermeyer J, Kovacevic B, Maksic ZB (2003) 1,8-Bis(dimethylethyleneguanidino)naphthalene: tailoring the basicity of bisguanidine “proton sponges” by experiment and theory. J Org Chem 68:8790–8797

    Article  CAS  Google Scholar 

  12. Herres S, Flörke U, Henkel G (2004) N,N′-Bis(dipiperidin-1-ylmethylene)-propane-1,3-diamine and N,N′-bis-(1,3-dimethylperhydropyrimidin-2-ylidene)propane-1,3-diamine. Acta Crystallogr C60:o358–o360

    CAS  Google Scholar 

  13. Yamada T, Liu X, Englert U, Yamane H, Dronskowski R (2009) Solid-state structure of free base guanidine achieved at last. Chem Eur J 15:5651–5655

    Article  CAS  Google Scholar 

  14. Sawinski PK, Meven M, Englert U, Dronskowski R (2013) Single-crystal neutron diffraction study on guanidine, CN3H5. Cryst Growth Des 13:1730–1735

    Article  CAS  Google Scholar 

  15. Börner J, dos Santos Vieira I, Jones MD, Döring A, Kuckling D, Flörke U, Herres-Pawlis S (2011) Zinc complexes with guanidine–pyridine hybrid ligands – guanidine effect and catalytic activity. Eur J Inorg Chem 4441–4456

    Google Scholar 

  16. Longhi R, Drago RS (1965) Transition metal ion complexes of tetramethylguanidine. Inorg Chem 4:11–14

    Article  CAS  Google Scholar 

  17. Schneider W, Bauer A, Schier A, Schmidbaur H (1997) Tetramethylguanidine and benzophenoneimine as ligands in gold chemistry. Chem Ber 130:1417–1422

    Article  CAS  Google Scholar 

  18. Oakley SH, Soria DB, Coles MP, Hitchcock PB (2004) Structural diversity in the coordination of amidines and guanidines to monovalent metal halides. Dalton Trans 537–546

    Google Scholar 

  19. Köhn U, Günther W, Görls H, Anders E (2004) Preparation of chiral thioureas, ureas and guanidines from (S)-2-(N, N-dialkylaminomethyl)pyrrolidines. Tetrahedron Asymmetry 15:1419–1426

    Article  CAS  Google Scholar 

  20. Köhn U, Schulz M, Görls H, Anders E (2005) Neutral zinc(II) and molybdenum(0) complexes with chiral guanidine ligands: synthesis, characterisation and applications. Tetrahedron Asymmetry 16:2125–2131

    Article  CAS  Google Scholar 

  21. Köhn U, Klopffleisch M, Görls H, Anders E (2006) Synthesis of hindered chiral guanidine bases starting from (S)-(N, N-dialkyl-aminomethyl)pyrrolidines and BrCN. Tetrahedron Asymmetry 17:811–818

    Article  CAS  Google Scholar 

  22. Pohl S, Harmjanz M, Schneider J, Saak W, Henkel G (2000) 1,3-Bis(N,N,N,N-tetramethylguanidino)propane: synthesis, characterization and bonding properties of the first bidentate, peralkylated guanidine ligand. J Chem Soc, Dalton Trans 3473–3479

    Google Scholar 

  23. Pohl S, Harmjanz M, Schneider J, Saak W, Henkel G (2000) Syntheses and structures of transition metal thiolate complexes containing the new bis(tetramethylguanidine) ligand btmgp. Inorg Chim Acta 311:106–112

    Article  CAS  Google Scholar 

  24. Wittmann H, Schorm A, Sundermeyer J (2000) Chelatliganden auf Basis peralkylierter Bis- und Tris-Guanidine. Z Anorg Allg Chem 626:1583–1590

    Article  CAS  Google Scholar 

  25. Kantlehner W, Haug E, Mergen WW, Speh P, Maier T, Kapassakalidis JJ, Bräuner HJ, Hagen H (1984) Herstellung von 1,1,2,3,3-pentasubstituierten und 1,1,2,2,3,3-hexasubstituierten Guanidiniumsalzen sowie von 1,1,2,3,3-Pentaalkylguanidinen. Liebigs Ann Chem 1:108–125

    Article  Google Scholar 

  26. Herres S, Heuwing AJ, Flörke U, Schneider J, Henkel G (2005) Hydroxylation of a methyl group: synthesis of [Cu2(btmmO)2I]+ and of [Cu2(btmmO)2]2+ containing the novel ligand {bis(trimethylmethoxy)guanidino}propane (btmmO) by copper-assisted oxygen activation. Inorg Chim Acta 358:1089–1095

    Article  CAS  Google Scholar 

  27. Herres-Pawlis S, Flörke U, Henkel G (2005) Tuning of copper(I)–dioxygen reactivity by bis(guanidine) ligands. Eur J Inorg Chem 3815–3824

    Google Scholar 

  28. Neuba A, Herres-Pawlis S, Seewald O, Börner J, Heuwing AJ, Flörke U, Henkel G (2010) Systematische Studie zu den Koordinationseigenschaften des Guanidin-Liganden Bis(tetramethylguanidino)propan mit den Metallen Mangan, Cobalt, Nickel, Zink, Cadmium, Quecksilber und Silber. Z Anorg Allg Chem 636:2641–2649

    Article  CAS  Google Scholar 

  29. Herres-Pawlis S, Haase R, Akin E, Flörke U, Henkel G (2008) Syntheses and x-ray structure analyses of the first bis(chelated) copper and iron bis(guanidine) complexes. Z Anorg Allg Chem 634:295–298

    Article  CAS  Google Scholar 

  30. Neuba A, Haase R, Bernard M, Flörke U, Herres-Pawlis S (2008) Systematische Studie zu den Koordinationseigenschaften des Guanidin-Liganden N1, N2-Bis(1,3-dimethylimidazolidin-2-yliden)-ethan-1,2-diamin mit den Metallen Mn, Co, Ni, Ag und Cu. Z Anorg Allg Chem 634:2511–2517

    Article  CAS  Google Scholar 

  31. Bienemann O, Haase R, Flörke U, Döring A, Kuckling D, Herres-Pawlis S (2010) New bis(guanidine)-copper complexes and their application in ATRP. Z Naturforsch 65b:798–806

    Google Scholar 

  32. Börner J, Herres-Pawlis S, Flörke U, Huber K (2007) [Bis(guanidine)]zinc complexes and their application in lactide polymerization. Eur J Inorg Chem 5645–5651

    Google Scholar 

  33. Pruszynski P, Leffek KT, Borecka B, Cameron TS (1992) Synthesis and structure of the picrate salt of 2,2′-bis[2N-(1,1,3,3-tetramethylguanidino)]biphenyl. Acta Crystallogr C 48:1638–1641

    Article  Google Scholar 

  34. Herres-Pawlis S, Neuba A, Seewald O, Seshadri T, Egold H, Flörke U, Henkel G (2005) A library of peralkylated bis-guanidine ligands for use in biomimetic coordination chemistry. Eur J Org Chem 4879–4890

    Google Scholar 

  35. Herres-Pawlis S, Seshadri T, Flörke U, Henkel G (2009) Reactivity of 2,2′-bis(2N-(1,1′,3,3′-tetramethyl-guanidino))diphenylene-amine with CuI and [Cu(MeCN)4][PF6]: benzimidazole formation vs. Cu oxidation. Z Anorg Allg Chem 635:1209–1214

    Article  CAS  Google Scholar 

  36. Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans 955–964

    Google Scholar 

  37. Hoffmann A, Bienemann O, dos Santos Vieira I, Herres-Pawlis S (2014) Neue aromatische Bisguanidin-Kupfer-Komplexe und ihre Anwendung in der ATRP. Z Naturforsch 69b:589–595

    Google Scholar 

  38. Reinmuth M, Neuhäuser C, Walter P, Enders M, Kaifer E, Himmel H-J (2010) The flexible coordination modes of guanidine ligands in Zn Alkyl and halide complexes: chances for catalysis. Eur J Inorg Chem 83–90

    Google Scholar 

  39. Neuba A, Herres-Pawlis S, Flörke U, Henkel G (2008) Synthese und Strukturen der ersten mehrkernigen Mangan-Guanidin-Komplexe und der ersten Mangan-Komplexe mit mono-protonierten Bis-Guanidinliganden. Z Anorg Allg Chem 634:771–777

    Article  CAS  Google Scholar 

  40. Mirica LM, Ottenwaelder X, Stack TDP (2004) Structure and spectroscopy of copper-dioxygen complexes. Chem Rev 104:1013–1045

    Article  CAS  Google Scholar 

  41. Herres-Pawlis S, Verma P, Haase R, Kang P, Lyons CT, Wasinger EC, Flörke U, Henkel G, Stack TDP (2009) Phenolate hydroxylation in a bis(μ-oxo)dicopper(III) complex: lessons from the guanidine/amine series. J Am Chem Soc 131:1154–1169

    Article  CAS  Google Scholar 

  42. Herres-Pawlis S, Binder S, Eich A, Haase R, Schulz B, Wellenreuther G, Henkel G, Rübhausen M, Meyer-Klaucke W (2009) Stabilisation of a highly reactive bis(μ-oxo)dicopper (III) species at room temperature by electronic and steric constraint of an unconventional nitrogen donor ligand. Chem Eur J 15:8678–8682

    Article  CAS  Google Scholar 

  43. Petrovic D, Hill LMR, Jones PG, Tolman WB, Tamm M (2008) Synthesis and reactivity of copper(I) complexes with an ethylene-bridged bis(imidazolin-2-imine) ligand. Dalton Trans 887–894

    Google Scholar 

  44. Glöge T, Petrovic D, Hrib CG, Daniliuc C, Herdtweck E, Jones PG, Tamm M (2010) Synthesis and structural characterisation of an isomorphous series of bis(imidazolin-2-imine) metal dichlorides containing the first row transition metals Mn, Fe, Co, Ni, Cu and Zn. Z Anorg Allg Chem 636:2303–2308

    Article  CAS  Google Scholar 

  45. Chaudhuri UP, Powell DR, Houser RP (2009) New examples of μ-η2:η2-disulfido dicopper(II, II) complexes with bis(tetramethylguanidine) ligands. Inorg Chim Acta 362:2371–2378

    Article  CAS  Google Scholar 

  46. Wittmann H, Raab V, Schorm V, Plackmeyer J, Sundermeyer J (2001) Complexes of manganese, iron, zinc, and molybdenum with a superbasic tris(guanidine) derivative of tris(2-ethylamino)amine (tren) as a tripod ligand. Eur J Inorg Chem 1937–1948

    Google Scholar 

  47. Raab V, Kipke J, Burghaus O, Sundermeyer J (2001) Copper complexes of novel superbasic peralkylguanidine derivatives of tris(2-aminoethyl)amine as constraint geometry ligands. Inorg Chem 40:6964–6971

    Article  CAS  Google Scholar 

  48. Schatz M, Raab V, Foxon SP, Brehm G, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S (2004) Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. Angew Chem 116:4460–4464

    Article  Google Scholar 

  49. Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S (2006) Crystallographic characterization of a synthetic 1:1 end-on copper dioxygen adduct complex. Angew Chem 118:3951–3954

    Article  Google Scholar 

  50. Maiti D, Lee D-H, Gaoutchenova K, Würtele C, Holthausen MC, Narducci Sarjeant AA, Sundermeyer J, Schindler S, Karlin KD (2008) Reactions of a copper(II) superoxo complex lead to C-H and O-H substrate oxygenation: modeling copper-monooxygenase C-H hydroxylation. Angew Chem 120:88–91

    Article  Google Scholar 

  51. Schatz M, Raab V, Foxon SP, Brehm G, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S (2004) Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. Angew Chem Int Ed 43:4360–4363

    Article  CAS  Google Scholar 

  52. Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S (2006) Crystallographic characterization of a synthetic 1:1 end-on copper dioxygen adduct complex. Angew Chem Int Ed 45:3867–3869

    Article  CAS  Google Scholar 

  53. Maiti D, Lee D-H, Gaoutchenova K, Würtele C, Holthausen MC, Narducci Sarjeant AA, Sundermeyer J, Schindler S, Karlin KD (2008) Reactions of a copper(II) superoxo complex lead to C-H and O-H substrate oxygenation: modeling copper-monooxygenase C-H hydroxylation. Angew Chem Int Ed 47:82–85

    Article  CAS  Google Scholar 

  54. Maiti D, Lee D, Narducci Sarjeant AA, Pau MYM, Solomon EI, Gaoutchenova K, Sundermeyer J, Karlin KD (2008) Reaction of a copper-dioxygen complex with nitrogen monoxide (•NO) leads to a copper(II)-peroxynitrite species. J Am Chem Soc 130:6700–6701

    Article  CAS  Google Scholar 

  55. Lanci MP, Smirnov VV, Cramer CJ, Gauchenova EV, Sundermeyer J, Roth JP (2007) Isotopic probing of molecular oxygen activation at copper(I) sites. J Am Chem Soc 129:14697–14709

    Article  CAS  Google Scholar 

  56. Woertink JS, Tian L, Maiti D, Lucas HR, Himes RA, Karlin KD, Neese F, Würtele C, Holthausen MC, Bill E, Sundermeyer J, Schindler S, Solomon EI (2010) Spectroscopic and computational studies of an end-on bound superoxo-Cu(II) complex: geometric and electronic factors that determine the ground state. Inorg Chem 49:9450–9459

    Article  CAS  Google Scholar 

  57. Saracini C, Liakos DG, Zapata Rivera JE, Neese F, Meyer GJ, Karlin KD (2014) Excitation wavelength dependent O2 release from copper(II)−superoxide compounds: laser flash-photolysis experiments and theoretical studies. J Am Chem Soc 136:1260–1263

    Article  CAS  Google Scholar 

  58. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304:864–867

    Article  CAS  Google Scholar 

  59. Klinman JP (1996) Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem Rev 96:2541–2562

    Article  CAS  Google Scholar 

  60. Poater A, Cavallo L (2009) Probing the mechanism of O2 activation by a copper(I) biomimetic complex of a C-H hydroxylating copper monooxygenase. Inorg Chem 48:4062–4066

    Article  CAS  Google Scholar 

  61. Raab V, Merz M, Sundermeyer J (2001) Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate (DMC). J Mol Catal A Chem 175:51–63

    Article  CAS  Google Scholar 

  62. Peterson RL, Ginsbach JW, Cowley RE, Qayyum MF, Himes RA, Siegler MA, Moore CD, Hedman B, Hodgson KO, Fukuzumi S, Solomon EI, Karlin KD (2013) Stepwise protonation and electron-transfer reduction of a primary copper−dioxygen adduct. J Am Chem Soc 135:16454–16467

    Article  CAS  Google Scholar 

  63. England J, Martinho M, Farquhar ER, Frisch JR, Bominaar EL, Münck E, Que L Jr (2009) A synthetic high-spin oxoiron(IV) complex: generation, spectroscopic characterization, and reactivity. Angew Chem 121:3676–3680

    Article  Google Scholar 

  64. England J, Martinho M, Farquhar ER, Frisch JR, Bominaar EL, Münck E, Que L Jr (2009) A synthetic high-spin oxoiron(IV) complex: generation, spectroscopic characterization, and reactivity. Angew Chem Int Ed 48:3622–3626

    Article  CAS  Google Scholar 

  65. England J, Guo Y, Farquhar ER, Young VG Jr, Münck E, Que L Jr (2010) The crystal structure of a high-spin oxoiron(IV) complex and characterization of its self-decay pathway. J Am Chem Soc 132:8635–8644

    Article  CAS  Google Scholar 

  66. England J, Farquhar ER, Guo Y, Cranswick MA, Ray K, Münck E, Que L Jr (2011) Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners. Inorg Chem 50:2885–2896

    Article  CAS  Google Scholar 

  67. Janardanan D, Wang Y, Schyman P, Que L Jr, Shaik S (2010) The fundamental role of exchange-enhanced reactivity in C-H activation by S=2 oxo iron(IV) complexes. Angew Chem Int Ed 49:3342–3345

    Article  CAS  Google Scholar 

  68. Wong SD, Bell CB III, Liu LV, Kwak Y, England J, Alp EE, Zhao J, Que L Jr, Solomon EI (2011) Nuclear resonance vibrational spectroscopy on the FeIV=O S=2 non-heme site in TMG3tren: experimentally calibrated insights into reactivity. Angew Chem Int Ed 50:3215–3218

    Article  CAS  Google Scholar 

  69. England J, Guo Y, Van Heuvelen KM, Cranswick MA, Rohde GT, Bominaar EL, Münck E, Que L Jr (2011) A more reactive trigonal-bipyramidal high-spin oxoiron(IV) complex with a cis-labile site. J Am Chem Soc 133:11880–11883

    Article  CAS  Google Scholar 

  70. Pfaff FF, Kundu S, Risch M, Pandian S, Heims F, Pryjomska-Ray I, Haack P, Metzinger R, Bill E, Dau H, Comba P, Ray K (2011) An oxocobalt(IV) complex stabilized by lewis acid interactions with scandium(III) ions. Angew Chem 123:1749–1753

    Article  Google Scholar 

  71. Pfaff FF, Kundu S, Risch M, Pandian S, Heims F, Pryjomska-Ray I, Haack P, Metzinger R, Bill E, Dau H, Comba P, Ray K (2011) An oxocobalt(IV) complex stabilized by lewis acid interactions with scandium(III) ions. Angew Chem Int Ed 50:1711–1715

    Article  CAS  Google Scholar 

  72. Pfaff FF, Heims F, Kundu S, Mebs S, Ray K (2012) Spectroscopic capture and reactivity of S = 1/2 nickel(III)–oxygen intermediates in the reaction of a NiII-salt with mCPBA. Chem Commun 48:3730–3732

    Article  CAS  Google Scholar 

  73. Hoffmann A, Börner J, Flörke U, Herres-Pawlis S (2009) Synthesis and properties of guanidine-pyridine hybridligands and structural characterisation of their mono- and bis(chelated) cobalt complexes. Inorg Chim Acta 362:1185–1193

    Article  CAS  Google Scholar 

  74. Wortmann R, Flörke U, Sarkar B, Maheshwari U, Gescheidt G, Herres-Pawlis S, Henkel G (2011) Synthesis and characterisation of novel manganese guanidine complexes and their application in the epoxidation of 1-octene. Eur J Inorg Chem 121–130

    Google Scholar 

  75. Hoffmann A, Binder S, Jesser A, Haase R, Flörke U, Gnida M, Salomone Stagni M, Meyer-Klaucke W, Lebsanft B, Grünig LE, Schneider S, Hashemi M, Goos A, Wetzel A, Rübhausen M, Herres-Pawlis S (2014) Catching an entatic state – a pair of copper complexes. Angew Chem 126:305–310

    Article  Google Scholar 

  76. Hoffmann A, Binder S, Jesser A, Haase R, Flörke U, Gnida M, Salomone Stagni M, Meyer-Klaucke W, Lebsanft B, Grünig LE, Schneider S, Hashemi M, Goos A, Wetzel A, Rübhausen M, Herres-Pawlis S (2014) Catching an entatic state – a pair of copper complexes. Angew Chem Int Ed 53:299–304

    Article  CAS  Google Scholar 

  77. Wortmann R, Hoffmann A, Haase R, Flörke U, Herres-Pawlis S (2009) Synthese und Charakterisierung von Cobalt(II)- und Kupfer(I)-Komplexen mit Guanidin-Pyridin-Hybridliganden. Z Anorg Allg Chem 635:64–69

    Article  CAS  Google Scholar 

  78. Jesser A, Rohrmüller M, Schmidt WG, Herres-Pawlis S (2014) Geometrical and optical benchmarking of copper guanidine–quinoline complexes: insights from TD-DFT and many-body perturbation theory. J Comput Chem 35:1–17

    Article  CAS  Google Scholar 

  79. Hoffmann A, Rohrmüller M, Jesser A, dos Santos Vieira I, Schmidt WG, Herres-Pawlis S (2014) Geometrical and optical benchmarking of copper(II) guanidine-quinoline complexes: insights from TD-DFT and many-body perturbation theory (part II). J Comput Chem 35:2146–2161

    Article  CAS  Google Scholar 

  80. Hoffmann A, Grunzke R, Herres-Pawlis S (2014) Insights into the influence of dispersion correction in the theoretical treatment of guanidine-quinoline copper(I) complexes. J Comput Chem 35:1943–1950

    Article  CAS  Google Scholar 

  81. Jesser A, dos Santos Vieira I, Herres-Pawlis S (2013) Novel tin(IV) complexes with the hybrid guanidine ligand DMEGqu. Z Naturforsch 68b:653–665

    Google Scholar 

  82. Haase R, Beschnitt T, Flörke U, Herres-Pawlis S (2011) Bidentate guanidine ligands with ethylene spacer in copper-dioxygen chemistry: structural characterization of bis(l-hydroxo) dicopper complexes. Inorg Chim Acta 374:546–557

    Article  CAS  Google Scholar 

  83. Kisslinger S, Kelm H, Zheng S, Beitat A, Würtele C, Wortmann R, Bonnet S, Herres-Pawlis S, Krüger H-J, Schindler S (2012) Synthesis and characterization of iron(II) thiocyanate complexes with derivatives of the tris(pyridine-2-ylmethyl)amine (tmpa) ligand. Z Anorg Allg Chem 638:2069–2077

    Article  CAS  Google Scholar 

  84. Neuba A, Flörke U, Meyer-Klaucke W, Salomone-Stagni M, Bill E, Bothe E, Höfer P, Henkel G (2011) The trinuclear copper(I) thiolate complexes [Cu3(NGuaS)3]0/1+ and their dimeric variants [Cu6(NGuaS)6]1+/2+/3+ with biomimetic redox properties. Angew Chem Int Ed 50:4503–4507

    Article  CAS  Google Scholar 

  85. Neuba A, Flörke U, Henkel G (2013) The mixed-valent copper thiolate complex hexakis{l3-2-[(1,3-dimethylimidazolidene)amino]benzenethiolato}-dicopper(II)tetracopper(I) bis(hexafluoridophosphate) acetonitrile disolvate dichloromethane disolvate. Acta Crystallogr E69:m54–m55

    Google Scholar 

  86. Neuba A, Haase R, Meyer-Klaucke W, Flörke U, Henkel G (2012) A halide-induced copper(I) disulfide/copper(II) thiolate interconversion. Angew Chem Int Ed 51:1714–1718

    Article  CAS  Google Scholar 

  87. Hoppe T, Josephs P, Kempf N, Wölper C, Schindler S, Neuba A, Henkel G (2013) An approach to model the active site of peptidglycine-α-hydroxylating monooxygenase (PHM). Z Anorg Allg Chem 639:1504–1511

    Article  CAS  Google Scholar 

  88. Peters A, Kaifer E, Himmel H-J (2008) 1,2,4,5-Tetrakis(tetramethylguanidino)benzene: synthesis and properties of a new molecular electron donor. Eur J Org Chem 2008:5907–5914

    Article  CAS  Google Scholar 

  89. Trumm C, Hübner O, Walter P, Leingang S, Wild U, Kaifer E, Eberle B, Himmel H-J (2014) One- versus two-electron oxidation of complexed guanidino-functionalized aromatic compounds. Eur J Inorg Chem 2014:6039–6050

    Article  CAS  Google Scholar 

  90. Peters A, Trumm C, Reinmuth M, Emeljanenko D, Kaifer E, Himmel H-J (2009) On the chemistry of the strong organic electron-donor 1,2,4,5-tetrakis(tetramethylguanidino)benzene: electron transfer in donor–acceptor couples and binuclear late transition metal complexes. Eur J Inorg Chem 2009:3791–3800

    Article  CAS  Google Scholar 

  91. Emeljanenko D, Peters A, Wagner N, Beck J, Kaifer E, Himmel H-J (2010) Successive ligand and metal oxidation: redox reactions involving binuclear CuI complexes of chelating guanidine ligands. Eur J Inorg Chem 2010:1839–1846

    Article  CAS  Google Scholar 

  92. Trumm C, Kaifer E, Hübner O, Himmel H-J (2010) Trapped in a complex: the 1,2,4,5-tetrakis(tetramethylguanidino)benzene radical cation (ttmgb) with a bisallylic structure. Eur J Inorg Chem 2010:3102–3108

    Article  CAS  Google Scholar 

  93. Biagini Cingi M, Manotti Lanfredi AM, Tiripicchio A, Haasnoot JG, Reedijk J (1983) Spectral properties and crystal structure of bis(μ-thiocyanato-N, S)bis-(thiocyanato-N)tetrakis(5,7-dimethyl[1,2,4]triazolo[1,5α]pyrimidine-N3)-dicopper(II) and of tetrakis(5,7-dimethyl[1,2,4]triazolo-[1,5α]pyrimidine-N3)-platinum(II) hexa(thiocyanato-S)palatinate(IV). Inorg Chim Acta 72:81–88

    Article  Google Scholar 

  94. Haasnoot JG, Driessen WL, Reedijk J (1984) Distortion isomerism in a thiocyanate-bridged copper(II) dimer. X-ray structure of β-bis(μ- thiocyanato-N, S) bis[bis(5,7-dimethyl[1,2,4]-triazolo[1,5-α]pyrimidine) (thiocyanato-N)copper(II)] and comparison of its spectral and structural properties with those of other copper(II) 5,7-dimethyl[1,2,4]triazolo[1,5-α]pyrimidine thiocyanates. Inorg Chem 23:2803–2807

    Article  CAS  Google Scholar 

  95. Favre TLF, Haasnoot JG, Reedijk J (1986) Characterization of copper(II) coordination compounds of 5,7-dimethyl[1,2,4]triazolo[1,5-α]pyrimidine: the crystal structure of diaquatetrakis-(5,7-dimethyl[1,2,4]triazolo[1,5-α]pyrimidine-N 3)-copper(II) hexafluorophosphate. Polyhedron 5:1405–1411

    Article  CAS  Google Scholar 

  96. Grodzicki A, Szlyk E, Wojtczak A, Wrzeszcz G, Pazderski L, Muziol T (1999) The molecular structures of copper(II) chloroacetate complexes with 5,7-dimethyl- 1,2,4-triazolo-[1,5-α]-pyrimidine and 5,7-diphenyl-1,2,4-triazolo-[1,5-α]-pyrimidine. Polyhedron 18:519–527

    Article  CAS  Google Scholar 

  97. Haasnoot JG, Favre TLF, Hinrichs W, Reedijk J (1988) A novel tetranuclear copper(I) cluster with alternate bridging halide and triazolopyrimidine ligands. Angew Chem Int Ed 27:856–858

    Article  Google Scholar 

  98. Dirks EJ, Haasnoot JG, Kinnegin AJ, Reedijk J (1987) Coordination compounds of 5-methyl[1,2,4]triazolo[1,5α]pyrimidin-7-ol. Structures, spectra, and unusual magnetic properties of tetraaquabis(5-methyl[1,2,4]triazolo[1,5-α]pyrimidin-7-olato)copper(II) and the structurally analogous diammine diaqua compound. Inorg Chem 26:1902–1906

    Article  CAS  Google Scholar 

  99. Cornelissen JP, De Graaff RAG, Haasnoot JG, Prins R, Reedijk J (1989) Structures and properties of bis(thiocyanato-N)bis(6-methyl[1,2,4]triazolo[1,5-α]pyrimidine-N 3)copper(II), a distorted tetrahedral copper(II) thiocyanate compound, and bis(thiocyanato-N)bis(5-methyl[1,2,4]triazolo[1,5-α]pyrimidine-N 3)copper(II), a polynuclear pseudo-layered system. Polyhedron 8:2313–2320

    Article  CAS  Google Scholar 

  100. Tyan MR, Bokach NA, Wang M-J, Haukka M, Kuznetsov ML, Kukushkin VY (2008) Facile cyanamide-ammonia coupling mediated by cis- and trans-[PtIIL2] centers and giving metal-bound guanidines. Dalton Trans 2008:5178–5188

    Article  CAS  Google Scholar 

  101. Legin AA, Jakupec MA, Bokach NA, Tyan MR, Kukushkin VY, Keppler BK (2014) Guanidine platinum(II) complexes: synthesis, in vitro antitumor activity, and DNA interactions. J Inorg Biochem 133:33–39

    Article  CAS  Google Scholar 

  102. Jeyalakshmi K, Selvakumaran N, Bhuvanesh NSP, Sreekanth A, Karvembu R (2014) DNA/protein binding and cytotoxicity studies of copper(II) complexes containing N, N′, N″-trisubstituted guanidine ligands. RSC Adv 4:17179–17195

    Article  CAS  Google Scholar 

  103. Coles MP, Hitchcock PB (2001) Synthesis and X-ray crystal structure of polymeric and dimeric copper(I) cyanide complexes incorporating a bicyclic guanidine ligand. Polyhedron 20:3027–3032

    Article  CAS  Google Scholar 

  104. Oakley SH, Coles MP, Hitchcock PB (2003) Structural and catalytic properties of bis(guanidine)copper(I) halides. Inorg Chem 42:3154–3154

    Article  CAS  Google Scholar 

  105. Oakley SH, Coles MP, Hitchcock PB (2004) Structural consequences of the prohibition of hydrogen bonding in copper-guanidine systems. Inorg Chem 43:5168–5172

    Article  CAS  Google Scholar 

  106. Oakley SH, Coles MP, Hitchcock PB (2004) Poly(guanidyl)silanes as a new class of chelating, N-based ligand. Dalton Trans 2004:1113–1114

    Article  CAS  Google Scholar 

  107. Oakley SH, Coles MP, Hitchcock PB (2004) Multiple coordination geometries supported by methylene-linked guanidines. Inorg Chem 43:7564–7566

    Article  CAS  Google Scholar 

  108. Coles MP, Khalaf MS, Hitchcock PB (2014) A new aliphatic N, C, N′-pincer ligand with pendant guanidine groups. Inorg Chim Acta 422:228–234

    Article  CAS  Google Scholar 

  109. Coles MP, Sözerli SE, Smith JD, Hitchcock PB (2007) Metal complexes of guanidine-substituted alkyl ligands: an unsolvated monomeric two-coordinate organolithium. Organometallics 26:6691–6693

    Article  CAS  Google Scholar 

  110. Coles MP, Sözerli SE, Smith JD, Hitchcock PB, Day IJ (2009) An ether-free, internally coordinated dialkylcalcium(II) complex. Organometallics 28:1579–1581

    Article  CAS  Google Scholar 

  111. Coles MP, El-Hamruni AM, Smith JD, Hitchcock PB (2008) An organozinc hydride cluster: an encapsulated tetrahydrozincate. Angew Chem Int Ed 47:10147–10150

    Article  CAS  Google Scholar 

  112. El-Hamruni SM, Sözerli SE, Smith JD, Coles MP, Hitchcock PB (2014) Tin and mercury compounds supported by a bulky organometallic ligand incorporating a pendant guanidine functionality. Aust J Chem 67:1071–1080

    Article  CAS  Google Scholar 

  113. Pal S, Das D, Chattopadhyay P, Sinha C, Panneerselvam K, Lu T-H (2000) Synthesis, spectral and electrochemical properties of 1-alkyl-2-(naphthyl-β-azo)imidazole complexes of platinum(II) and the reaction with pyridine bases. Single-crystal X-ray structure of dichloro-[1-ethyl-2-(naphthyl-β-azo)imidazole]platinum(II). Polyhedron 19:1263–1270

    Article  CAS  Google Scholar 

  114. Dinda J, Ray U, Mostafa G, Lu T-H, Usman A, Razak IA, Chantrapromma S, Fun H-K, Sinha C (2003) Copper(I)-azoimidazoles: a comparative account on the structure and electronic properties of copper(I) complexes of 1-methyl-2-(phenylazo)imidazole and 1-alkyl-2-(naphthyl-(α/β)-azo)imidazoles. Polyhedron 22:247–255

    Article  CAS  Google Scholar 

  115. Ray U, Banerjee D, Mostafa G, Lu T-H, Sinha C (2004) Copper coordination compounds of chelating imidazole-azo-aryl ligand. The molecular structures of bis[1-ethyl-2-(p-tolylazo) imidazole]-bis-(azido)copper(II) and bis[1-methyl-2-(phenylazo) imidazole]-bis(thiocyanato)copper(II). New J Chem 28:1437–1442

    Article  CAS  Google Scholar 

  116. Ray U, Sarker KK, Mostafa G, Lu T-H, Fallah MSE, Sinha C (2006) Copper(II) azide complexes of 1-alkyl-2-(arylazo)imidazoles: structure and magnetism. Polyhedron 25:2764–2772

    Article  CAS  Google Scholar 

  117. Banerjee D, Ray U, Jasimuddin S, Liou J-C, Lu T-H, Sinha C (2006) Copper(II) complexes of thioether containing an azoimidazolyl system. X-ray structure of Cu(SEtaaiNEt)Cl2 (SEtaaiNEt = 1-ethyl-2-{(o-thioethyl)phenylazo}imidazole). Polyhedron 25:1299–1306

    Article  CAS  Google Scholar 

  118. de Hoog P, Gamez P, Driessen WL, Reedijk J (2002) New polydentate and polynucleating N-donor ligands from amines and 2,4,6-trichloro-1,3,5-triazine. Tetrahedron Lett 43:6783–6786

    Article  Google Scholar 

  119. de Hoog P, Gamez P, Roubeau O, Lutz M, Driessen WL, Spek AL, Reedijk J (2002) Novel zigzag 1D coordination polymer from copper(II) chloride and N, N′-{2,4-di[(di-pyridin-2-yl)amine]-1,3,5-triazine}ethylenediamine exhibiting ferromagnetic interactions. New J Chem 27:18–21

    Article  CAS  Google Scholar 

  120. Gamez P, de Hoog P, Lutz M, Spek AL, Reedijk J (2003) Coordination compounds from 1,3,5-triazine-derived multidirectional ligands: application in oxidation catalysis. Inorg Chim Acta 351:319–325

    Article  CAS  Google Scholar 

  121. Casellas H, Gamez P, Reedijk J, Massera C (2006) Solvent control in the synthesis of Zn(II) and Cd(II) supramolecular compounds with N, N′-{2,4-di-[(di-pyridin-2-yl)amine]-1,3,5-triazine}ethylenediamine. Polyhedron 25:2959–2966

    Article  CAS  Google Scholar 

  122. Lu Z, Costa JS, Roubeau O, Mutikaine I, Turpeine U, Teat JS, Gamez P, Reedijk J (2008) A copper complex bearing a TEMPO moiety as catalyst for the aerobic oxidation of primary alcohols. Dalton Trans 2008:3567–3573

    Article  CAS  Google Scholar 

  123. Mooibroek TJ, Aromi G, Quesada M, Roubeau O, Gamez P, George SD, van Slageren J, Yasin S, Ruiz E, Reedijk J (2009) A mixed-valent pentanuclear CuII 4CuII compound containing a radical-anion ligand. Inorg Chem 48:10643–10651

    Article  CAS  Google Scholar 

  124. Costa JS, Castro AG, Pievo R, Roubeau O, Modec B, Kozlevecar B, Teat SJ, Gamez P, Reedijk J (2010) Proficiency of the electron-deficient 1,3,5-triazine ring to generate anion–π and lone pair–π interactions. Inorg Chem 48:10643–10651

    Google Scholar 

  125. Massoud SS, Louka FR, Xu W, Perkins RS, Vicente R, Albering JH, Maautner FA (2011) DNA cleavage by structurally characterized dinuclear copper(II) complexes based on triazine. Eur J Inorg Chem 2011:3469–3479

    Article  CAS  Google Scholar 

  126. Bloy M, Diefenbach U (2000) Synthese, Komplexbildung und Kristallstrukturen von Cyclotriphosphazenen mit N, N, N′, N′-Tetramethylguanidingruppen. Z Anorg Allg Chem 626:885–891

    Article  CAS  Google Scholar 

  127. Moggach SA, Galloway KW, Lennie AR, Parois P, Rowantree N, Brechin EK, Warren JE, Murrie M, Parsons S (2009) Polymerisation of a Cu(II) dimer into 1D chains using high pressure. CrystEngComm 11:2601–2604

    Article  CAS  Google Scholar 

  128. He C, Fuchs MR, Ogata H, Knipp M (2012) Guanidine-ferroheme coordination in the mutant protein nitrophorin 4(L130R). Inorg Chem 51:4470–4473

    CAS  Google Scholar 

  129. Färber C, Leibold M, Bruhn C, Maurer M, Siemeling U (2012) Nitron: a stable N-heterocyclic carbene that has been commercially available for more than a century. Chem Commun 48:227–229

    Article  Google Scholar 

  130. Klapp LRR, Bruhn C, Leibold M, Siemeling U (2013) Ferrocene-based bis(guanidines): superbases for tridentate N, Fe, N-coordination. Organometallics 32:5862–5872

    Article  CAS  Google Scholar 

  131. Tönnemann J, Scopelliti R, Severin K (2014) (Arene)ruthenium complexes with imidazolin-2-imine and imidazolidin-2-imine ligands. Eur J Inorg Chem 2014:4287–4293

    Article  CAS  Google Scholar 

  132. Bagchi V, Paraskevopoulou P, Das P, Chi L, Wang Q, Choudhury A, Mathieson JS, Cronin L, Pardue DB, Cundari TR, Mitrikas G, Sanakis Y, Stavropoulos P (2014) A versatile tripodal Cu(I) reagent for C−N bond construction via nitrene-transfer chemistry: catalytic perspectives and mechanistic insights on C−H aminations/amidinations and olefin aziridinations. J Am Chem Soc 136:11362–11381

    Article  CAS  Google Scholar 

  133. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  134. Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean 36:433–442

    CAS  Google Scholar 

  135. dos Santos Vieira I, Herres-Pawlis S (2012) Lactide polymerisation with complexes of neutral N-donors – new strategies for robust catalysts. Eur J Inorg Chem 765–774

    Google Scholar 

  136. Endres HJ, Siebert-Raths A (2011) Engineering biopolymers. Hanser, Munich, p 225

    Book  Google Scholar 

  137. Börner J, Flörke U, Glöge T, Bannenberg T, Tamm M, Jones MD, Döring A, Kuckling D, Herres-Pawlis S (2010) New insights into the lactide polymerisation with neutral N-donor stabilised zinc complexes. J Mol Catal A Chem 316:139–145

    Article  CAS  Google Scholar 

  138. Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid) – synthesis, structures, properties, processing, and applications. Wiley, Hoboken

    Book  Google Scholar 

  139. Inkinen S, Hakkarainen M, Albertsson AC, Södergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532

    Article  CAS  Google Scholar 

  140. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers – polylactide a critique. Eur Polym J 43:4053–4074

    Article  CAS  Google Scholar 

  141. Platel RH, Hodgson LM, Williams CK (2008) Biocompatible initiators for lactide polymerization. Polym Rev 48:11–63

    Article  CAS  Google Scholar 

  142. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  143. Ahmed J, Varshney SK (2011) Polylactides-chemistry, properties and green packaging technology: a review. Int J Food Prop 14:37–58

    Article  CAS  Google Scholar 

  144. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  Google Scholar 

  145. Wheaton CA, Hayes PG, Ireland BJ (2009) Complexes of Mg, Ca and Zn as homogeneous catalysts for lactide polymerization. Dalton Trans 4832–4846

    Google Scholar 

  146. Wu J, Yu TL, Chen CT, Lin CC (2006) Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord Chem Rev 250:602–626

    Article  CAS  Google Scholar 

  147. Drumright R, Gruber P, Henton D (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  148. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poy(lactic acid): a review. J Macromol Sci C Polym Rev 45:325–349

    Article  CAS  Google Scholar 

  149. Kricheldorf HR (2001) Syntheses and application of polylactides. Chemosphere 43:49–54

    Article  CAS  Google Scholar 

  150. Dijkstra PJ, Dum H, Feijen J (2011) Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym Chem 2:520–527

    Article  CAS  Google Scholar 

  151. Stanford MJ, Dove AP (2010) Stereocontrolled ring-opening polymerisation of lactide. Chem Soc Rev 39:486–494

    Article  CAS  Google Scholar 

  152. Kricheldorf HR, Meier-Haak J (1993) Polylactones, 22 ABA triblock copolymers of L-lactide and poly(ethylene glycol). Macromol Chem 194:715–725

    Article  CAS  Google Scholar 

  153. Yuan M, Liu D, Xiong C, Deng X (1999) Synthesis of polylactide and polyethylene glycol-co-poly-lactide copolymer with allylmagnesium chloride. Eur Polym J 35:2139–2145

    Article  CAS  Google Scholar 

  154. Kricheldorf HR, Damrau DO (1997) Polymerizations of L-lactide initiated with Zn(II) L-lactate and other resorbable Zn salts. Macromol Chem Phys 198:1753–1766

    Article  CAS  Google Scholar 

  155. Thomas CM (2010) Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem Soc Rev 39:165–173

    Article  CAS  Google Scholar 

  156. Dove AP, Gibson VC, Marshall EL, Rzepa HS, White AJP, Williams DJ (2006) Synthetic, structural, mechanistic and computational studies on single-site β-diketiminate tin(II) initiators for the polymerization of rac-lactide. J Am Chem Soc 128:9834–9843

    Article  CAS  Google Scholar 

  157. Williams CK, Breyfogle LE, Choi SK, Nam W, Young VG, Hillmyer MA, Tolman WB (2003) A highly active zinc catalyst for the controlled polymerization of lactide. J Am Chem Soc 125:11350–11359

    Article  CAS  Google Scholar 

  158. Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) Polymerization of lactide with zinc and magnesium ß-diiminate complexes: stereo control and mechanism. J Am Chem Soc 123:3229–3238

    Article  CAS  Google Scholar 

  159. Ejfler J, Zafert S, Mierzwicki K, Jerzykiewicz LB, Sobota P (2008) Homo- and heteroleptic zinc aminophenolates as initiators for lactide polymerization. Dalton Trans 6556–6562

    Google Scholar 

  160. Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC (2005) Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides. Polymer 46:9784–9792

    Article  CAS  Google Scholar 

  161. Jones MD, Davidson MG, Keir CG, Hughes LM, Mahon MF, Apperley DC (2009) Zinc(II) homogenous and heterogeneous species and their application for the ring-opening polymerization. Eur J Inorg Chem 635–642

    Google Scholar 

  162. Zhong ZY, Dijkstra PJ, Feijen J (2002) [(salen)Al]-Mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic d, l-lactide. Angew Chem 114:4692–4695

    Article  Google Scholar 

  163. Zhong ZY, Dijkstra PJ, Feijen J (2003) Controlled and stereoselective polymerization of rac-(D, L)-lactide: kinetics, selectivity and microstructures. J Am Chem Soc 125:11291–11298

    Article  CAS  Google Scholar 

  164. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J Am Chem Soc 128:4556–4557

    Article  CAS  Google Scholar 

  165. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840

    Article  CAS  Google Scholar 

  166. Becker JM, Tempelaar S, Stanford MJ, Pounder RJ, Covington JA, Dove AP (2010) Development of amino-oxazoline and amino-thiazoline organic catalysts for the ring-opening polymerisation of lactide. Chem Eur J 16:6099–6105

    Article  CAS  Google Scholar 

  167. Chuma A, Horn HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, Wade CG, Waymouth RM, Hedrick JL, Rice JE (2008) The reaction mechanism for the organocatalytic ring-opening polymerization of L-lactide using a guanidine-based catalyst: hydrogen-bonded or covalently bound? J Am Chem Soc 130:6749–6754

    Article  CAS  Google Scholar 

  168. Börner J, Flörke U, Huber K, Döring A, Kuckling D, Herres-Pawlis S (2009) Synthesis and characterisation of zinc complexes with guanidine-pyridine hybrid ligands: new catalysts for the ring-opening polymerisation of D, L-lactide. Chem Eur J 15:2362–2376

    Article  CAS  Google Scholar 

  169. Börner J, Flörke U, Döring A, Kuckling D, Herres-Pawlis S (2010) Tracking the structure-reactivity relationship of zinc guanidine-pyridine hybrid complexes initiating lactide polymerisation. Macromol Symp 296:354–365

    Article  CAS  Google Scholar 

  170. Börner J, dos Santos Vieira I, Pawlis A, Döring A, Kuckling D, Herres-Pawlis S (2011) Mechanism of the living lactide polymerisation mediated by robust zinc guanidine complexes. Chem Eur J 17:4507–4512

    Article  CAS  Google Scholar 

  171. Börner J, dos Santos Vieira I, Flörke U, Döring A, Kuckling D, Herres-Pawlis S (2011) Zinc complexes with mono- and polydentate behaving guanidine ligands and their application in lactide polymerization. In: Smith PB (ed) Renewable and sustainable polymers. American Chemical Society, Division of Polymer Chemistry/Oxford University Press, Washington, pp 169–200

    Chapter  Google Scholar 

  172. dos Santos Vieira I, Herres-Pawlis S (2012) Novel guanidine-quinoline hybrid ligands and the application of their zinc complexes in lactide polymerisation. Z Naturforsch 67:320–330

    Article  Google Scholar 

  173. Börner J, dos Santos Vieira I, Flörke U, Döring A, Kuckling D, Herres-Pawlis S (2010) Studies on the lactide polymerization initiated by DMEGqu-containing zinc complexes. Polym Prepr (Am Chem Soc Div Polym Chem) 51:743–744

    Google Scholar 

  174. Douglas AF, Patrick BO, Mehrkhodavandi P (2008) A highly active chiral indium catalyst for living lactide polymerization. Angew Chem 120:2322–2325

    Article  Google Scholar 

  175. Sousa SF, Carvalho ES, Ferreira DM, Tavares IS, Fernandes PA, Ramos MJ, Gomes JANF (2009) Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes. J Comput Chem 30:2752–2763

    Article  CAS  Google Scholar 

  176. Picot D, Ohanessian G, Frison G (2008) The alkylation mechanism of zinc-bound thiolates depends upon the zinc ligands. Inorg Chem 47:8167–8178

    Article  CAS  Google Scholar 

  177. Frison G, Ohanessian G (2008) A comparative study of semiempirical, ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-biomimetic complexes. J Comput Chem 29:416–433

    Article  CAS  Google Scholar 

  178. Amin EA, Truhlar DG (2008) Zn coordination chemistry: development of benchmark suites for geometries, dipole moments and bond dissociation energies and their use to test and validate density functionals and molecular orbital theory. J Chem Theory Comput 4:75–85

    Article  CAS  Google Scholar 

  179. Eger WA, Jahn BO, Anders E (2009) The zinc complex catalyzed hydration of alkyl isothiocyanates. J Mol Model 15:433–446

    Article  CAS  Google Scholar 

  180. Ryner M, Stridsberg K, Albertsson AC, von Schenck H, Svensson M (2001) Mechanism of ring-opening polymerization of 1,5-Dioxepan-2-one and L-lactide with stannous 2-ethylhexanoate. A theoretical study. Macromolecules 34:3877–3881

    Article  CAS  Google Scholar 

  181. von Schenck H, Ryner M, Albertsson AC, Svensson M (2002) Ring-opening polymerization of lactones and lactides with Sn(IV) and Al(III) initiators. Macromolecules 35:1556–1562

    Article  CAS  Google Scholar 

  182. Marshall EL, Gibson VC, Rzepa HS (2005) A computational study on the ring-opening polymerization of lactide initiated by β-diketiminate metal alkoxides: the origin of heterotactic stereocontrol. J Am Chem Soc 127:6048–6051

    Article  CAS  Google Scholar 

  183. Ling J, Shen J, Hogen-Esch TE (2009) A density functional theory study of the mechanisms of scandium-alkoxide initiated coordination–insertion ring-opening polymerization of cyclic esters. Polymer 50:3575–3581

    Article  CAS  Google Scholar 

  184. Bull SD, Davidson MG, Johnson AL, Robinson DEJE, Mahon MF (2003) Synthesis, structure and catalytic activity of an air-stable titanium triflate, supported by an amine tris(phenolate) ligand. Chem Commun 1750–1751

    Google Scholar 

  185. Davidson MG, O’Hara CT, Jones MD, Keir CG, Mahon MF, Kociok-Köhn G (2007) Synthesis and structure of a molecular barium aminebis(phenolate) and its application as an initiator for ring-opening polymerization of cyclic esters. Inorg Chem 46:7686–7688

    Article  CAS  Google Scholar 

  186. Chmura AJ, Cousins DM, Davidson MG, Jones MG, Lunn MD, Mahon MF (2008) Robust chiral zirconium alkoxide initiators for the room-temperature stereoselective ring-opening polymerisation of rac-lactide. Dalton Trans 1437–1443

    Google Scholar 

  187. Jones MD, Davidson MG, Kociok-Köhn G (2010) New titanium and zirconium initiators for the production of polylactide. Polyhedron 29:697–700

    Article  CAS  Google Scholar 

  188. Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 136:6513–6533

    Article  CAS  Google Scholar 

  189. Brar AS, Kaur S (2005) Tetramethylguanidino-tris(2-aminoethyl)amine: a novel ligand for copper-based atom transfer radical polymerization. J Polym Sci Part A Polym Chem 43:5906–5922

    Article  CAS  Google Scholar 

  190. Bienemann O, Haase R, Jesser A, Beschnitt T, Döring A, Kuckling D, dos Santos Vieira I, Flörke U, Herres-Pawlis S (2011) Synthesis and application of new guanidine copper complexes in atom transfer radical polymerisation. Eur J Inorg Chem 15:2367–2379

    Article  CAS  Google Scholar 

  191. Hoffmann A, Bienemann O, dos Santos Vieira I, Herres-Pawlis S (2014) New guanidine-pyridine copper complexes and their application in ATRP. Polymers 6:995–1007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Herres-Pawlis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stanek, J., Rösener, T., Metz, A., Mannsperger, J., Hoffmann, A., Herres-Pawlis, S. (2015). Guanidine Metal Complexes for Bioinorganic Chemistry and Polymerisation Catalysis. In: Selig, P. (eds) Guanidines as Reagents and Catalysts II. Topics in Heterocyclic Chemistry, vol 51. Springer, Cham. https://doi.org/10.1007/7081_2015_173

Download citation

Publish with us

Policies and ethics