Skip to main content

Guanidines as Catalysts for Direct and Indirect CO2 Capture and Activation

  • Chapter
  • First Online:
Guanidines as Reagents and Catalysts II

Abstract

CO2 emissions into the atmosphere from combustion processes remain large, and minimization of this phenomenon is wanted worldwide. The control of excessive CO2 release represents a challenge that requires new technologies. While CO2 represents an environmental problem as a greenhouse gas, it is at the same time eco-friendly in comparison with many other gases. Therefore, the development of suitable methods for the preparation of CO2-containing compounds like organic carbonates and urethanes could be a good alternative for recycling CO2 and using it as a substitute for phosgene, which is a high toxic reagent. Another non-phosgene alternative for the preparation of carbonates and carbamates is the reaction of organic carbonates with alcohols or amines. One environmentally benign organic carbonate is dimethyl carbonate (DMC), and because of increasing DMC production from CO2 reactions, using DMC can be considered as an indirect capture of CO2. Heterocyclic guanidines, like 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and N-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), and linear guanidines like 1,1,3,3-tetramethylguanidine (TMG) are some of the most commonly used guanidines in catalysis, being strong proton acceptors, comparable in strength with aliphatic amines. This chapter summarizes a number of works on the utilization of guanidines as catalysts for the direct and indirect capture and activation of the CO2 molecule, aiming at the insertion of this molecule into several chemical substrates to mitigate excess CO2 release and its environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For methods and catalysts used in DMC synthesis from CO2, see [2, 3, 6, 9, 35, 38].

  2. 2.

    For synthetic uses of TMG and their analogues, see Ishikawa [52]. For synthetic uses of TBD, see Kiesewetter et al. [54].

  3. 3.

    Selected articles: [14, 15, 23, 24, 31].

  4. 4.

    See North et al. [50] and cited references.

Abbreviations

BnTBD:

N-Benzyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene

BuTMG:

N-Butyl-N′,N′,N″,N″-tetramethylguanidine

CCS:

Carbon capture and storage

CO2BOL:

CO2 binding organic liquids

CyTEG:

N-Cyclohexyl-N′,N′,N″,N″-tetraethylguanidine

CyTMG:

N-Cyclohexyl-N′,N′,N″,N″-tetramethylguanidine

DAB:

1,4-Diaminobutane

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DBN:

1,5-Diazabicyclo(4.3.0)non-5-ene

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DFT:

Density functional theory

DMAc:

Dimethylacetamide

DMAP:

4-(Dimethylamino)pyridine

DMC:

Dimethyl carbonate

DPC:

Diphenyl carbonate

DPG:

Diphenylguanidine

EtTBD:

N-Ethyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene

FAGCs:

Fatty acid glycerol carbonates

FAMEs:

Fatty acid methyl esters

FGBILs:

Functional guanidinium-based ionic liquids

ILs:

Ionic liquids

MTBD:

N-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene

nBuTBD:

N-Butyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene

PEG:

Polyethylene glycol

PhTMG:

N-Phenyl-N′,N′,N″,N″-tetramethylguanidine

PIL:

Protic ionic liquid

PMDBD:

3,3,6,9,9-Pentamethyl-2,10-diazabicyclo[4.4.O]dec-1-ene

PTMG:

N-Propyl-N′,N′,N″,N″-tetramethylguanidine

TBD:

1,5,7-Triazabicyclo[4.4.0]dec-5-ene

TMG:

1,1,3,3-Tetramethylguanidine

References

  1. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R (2003) Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett 44:2931–2934

    Article  CAS  Google Scholar 

  2. Dibenedetto A, Angelini A, Stufano P (2014) Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J Chem Technol Biotechnol 89:334–353

    Article  CAS  Google Scholar 

  3. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  CAS  Google Scholar 

  4. Behles JA, DeSimone JM (2001) Developments in CO2 research. Pure Appl Chem 73:1281–1285

    Article  CAS  Google Scholar 

  5. Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel-carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun 15:636–637

    Article  Google Scholar 

  6. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231

    Article  CAS  Google Scholar 

  7. Gomes CN, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T (2012) A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew Chem Int Ed 51:187–190

    Article  CAS  Google Scholar 

  8. Huang K, Sun C-L, Shi Z-J (2011) Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chem Soc Rev 40:2435–2452

    Article  CAS  Google Scholar 

  9. Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Article  CAS  Google Scholar 

  10. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim

    Book  Google Scholar 

  11. Metz B, Davidson O, Coninck H, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  12. Liang C, Liu Q, Xu Z (2014) Surfactant-free switchable emulsions using CO2-responsive particles. Appl Mater Interfaces 6:6898–6904

    Article  CAS  Google Scholar 

  13. Pereira FS, deAzevedo ER, Silva EF, Bonagamba TJ, Agostíni DLS, Magalhães A, Job AE, González ERP (2008) Study of the carbon dioxide chemical fixation-activation by guanidines. Tetrahedron 64:10097–10106

    Article  CAS  Google Scholar 

  14. Pérez ER, Silva MO, Costa VC, Rodrigues-Filho UP, Franco DW (2002) Efficient and clean synthesis of N-alkyl carbamates by transcarboxylation and O-alkylation coupled reactions using a DBU-CO2 zwitterionic carbamic complex in aprotic polar media. Tetrahedron Lett 43:4091–4093

    Article  Google Scholar 

  15. Pérez ER, Santos RHA, Gambardella MTP, Macedo LGM, Rodrigues-Filho UP, Launay J-C, Franco DW (2004) Activation of carbon dioxide by bicyclic amidines. J Org Chem 69:8005–8011

    Article  CAS  Google Scholar 

  16. Alessio P, Ferreira DM, Job AE, Aroca RF, Riul A Jr, Constantino CJL, González ERP (2008) Fabrication, structural characterization, and applications of langmuir and langmuir-blodgett films of a poly(azo)urethane. Langmuir 24:4729–4737

    Article  CAS  Google Scholar 

  17. Gomes CR, Ferreira DM, Constantino CJL, González ERP (2008) Selectivity of the cyclic carbonate formation by fixation of carbon dioxide into epoxides catalyzed by Lewis bases. Tetrahedron Lett 49:6879–6881

    Article  CAS  Google Scholar 

  18. Hooker JM, Reibel AT, Hill SM, Schueller MJ, Fowler JS (2009) One-Pot, direct incorporation of [11C]CO2 into carbamates. Angew Chem Int Ed 48:3482–3485

    Article  CAS  Google Scholar 

  19. Heldebrant DJ, Koech PK, Ang MTC, Liang C, Rainbolt JE, Yonker CR, Jessop PG (2010) Reversible zwitterionic liquids, the reaction of alkanol guanidines, alkanol amidines, and diamines with CO2. Green Chem 12:713721

    Article  CAS  Google Scholar 

  20. Aresta M, Berloco C, Quaranta E (1995) Biomimetic building-up of the carbamic moiety: the intermediacy of carboxyphosphate analogues in the synthesis of n-aryl carbamate esters from arylamines and organic carbonates promoted by phosphorus acids. Tetrahedron 51:8073–8088

    Article  CAS  Google Scholar 

  21. Adams P, Baron FA (1965) Esters of carbamic acid. Chem Rev 65:567–602

    Article  CAS  Google Scholar 

  22. Babad H, Zeiler AG (1973) The chemistry of phosgene. Chem Rev 73:75–91

    Article  CAS  Google Scholar 

  23. McGhee WD, Riley D, Christ K, Pan Y, Parnas B (1995) Carbon dioxide as a phosgene replacement: synthesis and mechanistic studies of urethanes from amines, CO2, and alkyl chlorides. J Org Chem 60:2820–2830

    Article  CAS  Google Scholar 

  24. Casadei MA, Inesi A, Rossi L (1997) Electrochemical activation of carbon dioxide: synthesis of organic carbonates. Tetrahedron Lett 38:3565–3568

    Article  CAS  Google Scholar 

  25. Bruneau C, Dixneuf PH (1992) Catalytic incorporation of CO2 into organic substrates: synthesis of unsaturated carbamates, carbonates and ureas. J Mol Catal 74:97–107

    Article  CAS  Google Scholar 

  26. Hoffman WA (1982) Convenient preparation of carbonates from alcohols and carbon dioxide. J Org Chem 47:5209–5210

    Article  CAS  Google Scholar 

  27. Kim S-I, Chu F, Dueno EE, Jung KW (1999) Alkyl carbonates: efficient three component coupling of aliphatic alcohols, CO2, and alkyl halides in the presence of CS2CO3. J Org Chem 64:4578–4579

    Article  CAS  Google Scholar 

  28. Aresta M, Quaranta E (1988) Reactivity of phosphacarbamates: transfer of the carbamate group promoted by metal assisted electrophilic attack at the carbon dioxide moiety. J Org Chem 53:4154–4156

    Article  Google Scholar 

  29. Casadei MA, Inesi A, Moraccia FM, Rossi L (1996) Electrochemical activation of carbon dioxide: synthesis of carbamates. Chem Commun 22:2575–2576

    Article  Google Scholar 

  30. Stastny V, Rudkevich DM (2007) Separations using carbon dioxide. J Am Chem Soc 129:1018–1019

    Article  CAS  Google Scholar 

  31. Hooker JM, Reibel AT, Hill SM, Schuller MJ, Fowler JS (2009) One-pot, direct incorporation of [11C]CO2 into carbamates. Angew Chem 121:3534–3537

    Article  Google Scholar 

  32. Salvatore RN, Ledger JA, Jung KW (2001) An efficient one-pot synthesis of N-alkyl carbamates from primary amines using Cs2CO3. Tetrahedron Lett 42:6023–6025

    Article  CAS  Google Scholar 

  33. Pérez ER, Garcia JR, Cardoso DR, McGarvey BR, Batista EA, Rodrigues-Filho UP, Vielstich W, Franco DW (2005) In situ FT-IR and ex situ EPR analysis for the study of the electroreduction of carbon dioxide in N, N-dimethylformamide on a gold interface. J Electroanal Chem 578:87–94

    Article  CAS  Google Scholar 

  34. Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35:706–716

    Article  CAS  Google Scholar 

  35. Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuel 11:2–29

    Article  CAS  Google Scholar 

  36. Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S (2003) A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem 5:497–507

    Article  CAS  Google Scholar 

  37. Fukuoka S, Tojo M, Hachiya H, Aminaka M, Hasegawa K (2007) Green and sustainable chemistry in practice: development and industrialization of a novel process for polycarbonate production from CO2 without using phosgene. Polym J 39:91–114

    Article  CAS  Google Scholar 

  38. Dai W-L, Luo S-L, Yin S-F, Au C-T (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A 366:2–12

    Article  CAS  Google Scholar 

  39. Kolb N, Meier MAR (2012) Monomers and their polymers derived from saturated fatty acid methyl esters and dimethyl carbonate. Green Chem 14:2429–2435

    Article  CAS  Google Scholar 

  40. Fuming M, Zhi P, Guangwing L (2004) The transesterification of dimethyl carbonate with phenol over Mg-Al-hydrotalcite catalyst. Org Proc Res Dev 8:372–375

    Article  CAS  Google Scholar 

  41. Tong D-S, Yao J, Wang Y, Niu H-Y, Wang G-Y (2007) Transesterification of dimethyl carbonate with phenol to diphenyl carbonate over V2O5 catalyst. J Mol Catal A Chem 268:120–126

    Article  CAS  Google Scholar 

  42. Chen T, Han H, Yao J, Wang G (2007) The transesterification of dimethyl carbonate and phenol catalyzed by 12-molybdophosphoric salts. Catal Commun 8:1361–1365

    Article  CAS  Google Scholar 

  43. Kirumakki SR, Nagaraju N, Murthy KVVSBSR, Narayanan S (2002) Esterification of salicylic acid over zeolites using dimethyl carbonate. Appl Catal A Gen 226:175–182

    Article  CAS  Google Scholar 

  44. Sakakura T, Choi J-C, Saito Y, Sako T (2000) Synthesis of dimethyl carbonate from carbon dioxide: catalysis and mechanism. Polyhedron 19:573–576

    Article  CAS  Google Scholar 

  45. Keller N, Rebmann G, Keller V (2010) Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis. J Mol Catal A Chem 317:1–18

    Article  CAS  Google Scholar 

  46. Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115:33–52

    Article  CAS  Google Scholar 

  47. Ferreira HBP, Vale DL, Andrade LS, Mota CJA, Miranda JL (2013) Dimethylcarbonate: a route for the conversion of CO2. Rev Virtual Quim 5:188–200

    CAS  Google Scholar 

  48. Sakakura T, Kohno K (2009) The synthesis of organic carbonates from carbon dioxide. Chem Commun 11:1312–1330

    Article  CAS  Google Scholar 

  49. Tian J-S, Miao C-X, Wang J-Q, Cai F, Du Y, Zhao Y, He L-N (2007) Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chem 9:566–571

    Article  CAS  Google Scholar 

  50. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514–1539

    Article  CAS  Google Scholar 

  51. Taylor JE, Bull SD, Williams JMJ (2012) Amidines, isothioureas, and guanidines as nucleophilic catalysts. Chem Soc Rev 41:2109–2121

    Article  CAS  Google Scholar 

  52. Ishikawa T (2009) Superbases for organic synthesis: guanidines, amidines and phosphazenes and related organocatalysts. Wiley, Chichester

    Book  Google Scholar 

  53. Denmark SE, Beutner GL (2008) Lewis base catalysis in organic synthesis. Angew Chem Int Ed 47:1560–1638

    Article  CAS  Google Scholar 

  54. Kiesewetter MK, Scholten MD, Kirn N (2009) Cyclic guanidine organic catalysts: what is magic about triazabicyclodecene? J Org Chem 74:9490–9496

    Article  CAS  Google Scholar 

  55. Santo RDE, Simas RC, Magalhães A, Santos VG, Regiani T, Isler AC, Martins NG, Eberlin MN, González ERP (2013) Experimental NMR and MS study of benzoylguanidines. Investigation of E/Z isomerism. J Phys Org Chem 26:315–321

    Article  CAS  Google Scholar 

  56. Zhang W-Z, Shi L-L, Liu C, Yang X-T, Wang Y-B, Luo Y, Lu X-B (2014) Sequential carboxylation/intramolecular cyclization reaction of o-alkynyl acetophenone with CO2. Org Chem Front 1:275–283

    Article  CAS  Google Scholar 

  57. Santo RDE, Machado MGM, Santos JL, González ERP, Chin MC (2014) Use of guanidine compounds in the treatment of neglected tropical diseases. Curr Org Chem 18:2572–2602

    Article  CAS  Google Scholar 

  58. Adam F, Batagarawa MS (2013) Tetramethylguanidine-silica nanoparticles as an efficient and reusable catalyst for the synthesis of cyclic propylene carbonate from carbon dioxide and propylene oxide. Appl Catal A 454:164–171

    Article  CAS  Google Scholar 

  59. Fu X, Tan C-H (2011) Mechanistic considerations of guanidine-catalyzed reactions. Chem Commun 47:8210–8222

    Article  CAS  Google Scholar 

  60. Gusakova GV, Denisov GS, Smolyanskii AL (1990) Proton-acceptor power of l, l,3,3-tetramethylguanidine: hydrogen bonding and protonation in inert solvents. Zhurnal obshchei khimii 59:2343–2348

    Google Scholar 

  61. Barton DHR, Elliott JD, Géro SD (1981) The synthesis and properties of a series of strong but hindered organic bases. J Chem Soc Chem Commun 21:1136–1137

    Article  Google Scholar 

  62. Barton DHR, Elliott JD, Géro SD (1982) Synthesis and properties of a series of sterically hindered guanidine bases. J Chem Soc Perkin Trans I 2085–2090

    Google Scholar 

  63. Endo T, Nagai D, Monma T, Yamaguchi H, Ochiai B (2004) A novel construction of a reversible fixation-release system of carbon dioxide by amidines and their polymers. Macromolecules 37:2007–2009

    Article  CAS  Google Scholar 

  64. Darensbourg DJ, Mackiewicz RM (2005) Role of the cocatalyst in the copolymerization of CO2 and cyclohexene oxide utilizing chromium salen complexes. J Am Chem Soc 127:14026–14038

    Article  CAS  Google Scholar 

  65. Yamada T, Lukac PJ, George M, Weiss RG (2007) Reversible, room-temperature ionic liquids. Amidinium carbamates derived from amidines and aliphatic primary amines with carbon dioxide. Chem Mater 19:967–969

    Article  CAS  Google Scholar 

  66. Amatore C, Savéan J-M (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103:5021–5023

    Article  CAS  Google Scholar 

  67. Villiers C, Dognon J-P, Pollet R, Thuéry P, Ephritikhine M (2010) An isolated CO2 adduct of a nitrogen base: crystal and electronic structures. Angew Chem 122:3543–3546

    Article  Google Scholar 

  68. Villiers C, Dognon J-P, Pollet R, Thuéry P, Ephritikhine M (2010) An isolated CO2 adduct of a nitrogen base: crystal and electronic structures. Angew Chem Int Ed 49:3465–3468

    Article  CAS  Google Scholar 

  69. Ma J, Zhang X, Zhao N (2010) Theoretical study of TBD-catalyzed carboxylation of propylene glycol with CO2. J Mol Catal A Chem 315:76–81

    Article  CAS  Google Scholar 

  70. Mizuno T, Okamoto N, Ito T, Miyata T (2000) Synthesis of 2,4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett 41:1051–1053

    Article  CAS  Google Scholar 

  71. Ishikawa T, Kumamoto T (2006) Guanidines in organic synthesis. Synthesis 5:737–752

    Article  CAS  Google Scholar 

  72. Coles MP (2009) Bicyclic-guanidines, -guanidinates and -guanidinium salts: wide ranging applications from a simple family of molecules. Chem Commun 3659–3676

    Google Scholar 

  73. Leow D, Tan C-H (2009) Chiral guanidine catalyzed enantioselective reactions. Chem Asian J 4:488–507

    Article  CAS  Google Scholar 

  74. Ishikawa T, Isobe T (2002) Modified guanidines as chiral auxiliaries. Chem Eur J 8:552–557

    Article  CAS  Google Scholar 

  75. Nagasawa K, Hashimoto Y (2003) Synthesis of marine guanidine alkaloids and their application as chemical/biological tools. Chem Rec 3:201–211

    Article  CAS  Google Scholar 

  76. Leow D, Tan C-H (2010) Catalytic reactions of chiral guanidines and guanidinium salts. Synlett 11:1589–1605

    Google Scholar 

  77. Turočkin A (2014) 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) as a lewis base. Synlett 25:894–895

    Article  CAS  Google Scholar 

  78. Tkatchenko DB, Sorokina S (2003) Linear organic carbonates. In: Aresta M (ed) Carbon dioxide recovery and utilization. Kluwer, Dordrecht, pp 261–277

    Chapter  Google Scholar 

  79. Shaikh A-A G, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976

    Article  Google Scholar 

  80. Pokharkar V, Sivaram S (1995) Poly(alkylene carbonate)s by the carbonate interchange reaction of aliphatic diols with dimethyl carbonate: synthesis and characterization. Polymer 36:4851–4854

    Article  CAS  Google Scholar 

  81. Adams JB (1992) PCT Int Appl WO 04:318

    Google Scholar 

  82. Chaturvedi D (2012) Perspectives on the synthesis of organic carbamates. Tetrahedron 68:15–45

    Article  CAS  Google Scholar 

  83. Ghiron C, Rossi T, Thomas RJ (1997) The stereoselective synthesis of 4-formytrinem, a key intermediate for novel trinems. Tetrahedron Lett 38:3569–3572

    Article  CAS  Google Scholar 

  84. Smith AB, Freeze BS, LaMarche MJ, Hirose T, Brouard I, Rucker PV, Xian M, Sundermann KF, Shaw SJ, Burlingame MA, Horwitz SB, Myles DC (2005) Design, synthesis, and evaluation of carbamate-substituted analogues of (+)-discodermolide. Org Lett 7:311–314

    Article  CAS  Google Scholar 

  85. Dangerfield EM, Timmer MSM, Stoker BL (2009) Total synthesis without protecting groups: pyrrolidines and cyclic carbamates. Org Lett 11:535–538

    Article  CAS  Google Scholar 

  86. Wills AJ, Ghosh YK, Balasubramanian S (2002) Synthesis of a polymer-supported oxazolidine aldehyde for asymmetric chemistry. J Org Chem 67:6646–6652

    Article  CAS  Google Scholar 

  87. Han C, Shen R, Su S, Porco JA Jr (2004) Copper-mediated synthesis of n-acyl vinylogous carbamic acids and derivatives: synthesis of the antibiotic CJ-15,801. Org Lett 6:27–30

    Article  CAS  Google Scholar 

  88. Greene TW, Wuts PGM (2007) Protective group in organic synthesis, 4th edn. New York, Wiley

    Google Scholar 

  89. Kociensiki PJ (2003) Protective groups, 3rd edn. Thieme, Stuttgart

    Google Scholar 

  90. Mayer JP, Lewis GS, Curtis MJ, Zhang J (1997) Solid phase synthesis of quinazolinones. Tetrahedron Lett 38:8445–8448

    Article  CAS  Google Scholar 

  91. Aresta M, Dibenedetto A (2004) The contribution of the utilization option to reducing the CO2 atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catal Today 98:455–462

    Article  CAS  Google Scholar 

  92. Dibenedetto A, Angelini A (2014) Chapter two: synthesis of organic carbonates. Adv Inorg Chem 66:25–81

    Article  CAS  Google Scholar 

  93. McGhee WD, Riley DP, Christ ME, Christ KM (1993) Palladium-catalyzed generation of o-allylic urethanes and carbonates from amines/alcohols, carbon dioxide, and allylic chlorides. Organometallics 12:1429–1433

    Article  CAS  Google Scholar 

  94. McGhee WD, Pan Y, Riley DP (1994) Highly selective generation of urethanes from amines, carbon dioxide and alkyl chlorides. J Chem Soc Chem Commun 6:699–700

    Article  Google Scholar 

  95. McGhee WD, Riley D (1995) Replacement of phosgene with carbon dioxide: synthesis of alkyl carbonates. J Org Chem 60:6205–6207

    Article  CAS  Google Scholar 

  96. McGhee WD, Parnas BL, Riley DP, Talley JJ (29 June 1993) US Patent 5,223,638

    Google Scholar 

  97. McGhee WD, Parnas BL, Riley DP, Talley JJ (1993) Chem Abstr 118:213762

    Google Scholar 

  98. Kadokawa J-I, Habu H, Fukamachi S, Karasu M, Tagaya H, Chiba K (1998) Direct polycondensation of carbon dioxide with xylylene glycols: a new method for the synthesis of polycarbonates. Macromol Rapid Commun 19:657–660

    Article  CAS  Google Scholar 

  99. Kadokawa J-I, Habu H, Fukamachi S, Karasu M, Tagaya H, Chiba K (1999) Direct condensation reaction of carbon dioxide with alcohols using trisubstituted phosphine-carbon tetrabromide-base system as a condensing agent. J Chem Soc Perkin Trans 1(15):2205–2208

    Article  Google Scholar 

  100. Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL (2005) The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J Org Chem 70:5335–5338

    Article  CAS  Google Scholar 

  101. Pereira FS, Agostini DLS, Santo RDE, deAzevedo ER, Bonagamba TJ, Job AE, González ERP (2011) A comparative solid state 13C NMR and thermal study of CO2 capture by amidines PMDBD and DBN. Green Chem 13:2146–2153

    Article  CAS  Google Scholar 

  102. Wang X, Lim YN, Lee C, Jang H-Y, Lee BY (2013) 1,5,7-Triazabicyclo[4.4.0]dec-1-ene-mediated acetylene dicarboxylation and alkyne carboxylation using carbon dioxide. Eur J Org Chem 10:1867–1871

    Article  CAS  Google Scholar 

  103. Xie H, Yu X, Yang Y, Zhao ZK (2014) Capturing CO2 for cellulose dissolution. Green Chem 16:2422–2427

    Article  CAS  Google Scholar 

  104. Xie H, Duan H, Li S, Zhang S (2005) The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New J Chem 29:1199–1203

    Article  CAS  Google Scholar 

  105. Xie H, Li S, Zhang S (2006) Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides. J Mol Catal A Chem 250:30–34

    Article  CAS  Google Scholar 

  106. Zhang X, Zhao N, Wei W, Sun Y (2006) Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catal Today 115:102–106

    Article  CAS  Google Scholar 

  107. Lu X-B, Shi L, Wang Y-M, Zhang R, Zhang Y-J, Peng X-J, Zhang Z-C, Li B (2006) Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J Am Chem Soc 128:1664–1674

    Article  CAS  Google Scholar 

  108. Li B, Zhang R, Lu X-B (2007) Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules 40:2303–2307

    Article  CAS  Google Scholar 

  109. Zhang X, Jia Y-B, Lu X-B, Li B, Wang H, Sun L-C (2008) Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett 49:6589–6592

    Article  CAS  Google Scholar 

  110. Ren W-M, Liu Z-W, Wen Y-Q, Zhang R, Lu X-B (2009) Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J Am Chem Soc 131:11509–11518

    Article  CAS  Google Scholar 

  111. Huang S, Ma J, Li J (2008) Efficient propylene carbonate synthesis from propylene glycol and carbon dioxide via organic bases. Catal Commun 9:276–280

    Article  CAS  Google Scholar 

  112. Prasetyanto EA, Ansari MB, Min B-H, Park S-E (2010) Melamine tri-silsesquioxane bridged periodic mesoporous organosilica as an efficient metal-free catalyst for CO2 activation. Catal Today 158:252–257

    Article  CAS  Google Scholar 

  113. Yu KMK, Curcic I, Gabriel J, Morganstewart H, Tsang SC (2010) Catalytic coupling of CO2 with epoxide over supported and unsupported amines. J Phys Chem A 114:3863–3872

    Article  CAS  Google Scholar 

  114. Yang Z-Z, Zhao Y-N, He L-N, Gao J, Yin Z-S (2012) Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids. Green Chem 14:519–527

    Article  CAS  Google Scholar 

  115. Wei-Li D, Bi J, Sheng-Lian L, Xu-Biao L, Xin-Man T, Chak-Tong A (2013) Novel functionalized guanidinium ionic liquids: efficient acid-base bifunctional catalysts for CO2 fixation with epoxides. J Mol Catal A Chem 378:326–332

    Article  CAS  Google Scholar 

  116. Liu B, Liu M, Liang L, Sun J (2015) Guanidine hydrochloride/ZnI2 as heterogeneous catalyst for conversion of CO2 and epoxides to cyclic carbonates under mild conditions. Catalysts 5:119–130

    Article  CAS  Google Scholar 

  117. Li Y-N, He L-N, Diao Z-F, Yang Z-Z (2014) Chapter nine: carbon capture with simultaneous activation and its subsequent transformation. Adv Inorg Chem 66:289–345

    Article  CAS  Google Scholar 

  118. Costa M, Chiusoli GP, Rizzardi M (1996) Base-catalysed direct introduction of carbon dioxide into acetylenic amines. Chem Commun 14:1699–1700

    Article  Google Scholar 

  119. Costa M, Chiusoli GP, Taffurelli C, Dalmonego G (1998) Superbase catalysis of oxazolidin-2-one ring formation from carbon dioxide and prop-2-yn-1-amines under homogeneous or heterogenous conditions. J Chem Soc Perkin Trans 1(9):1541–1546

    Article  Google Scholar 

  120. Nicholls R, Kaufhold S, Nguyen BN (2014) Observation of guanidine–carbon dioxide complexation in solution and its role in the reaction of carbon dioxide and propargylamines. Catal Sci Technol 4:3458–3462

    Article  CAS  Google Scholar 

  121. Maggi R, Bertolotti C, Orlandini E, Oro C, Sartori G, Selva M (2007) Synthesis of oxazolidinones in supercritical CO2 under heterogeneous catalysis. Tetrahedron Lett 48:2131–2134

    Article  CAS  Google Scholar 

  122. Paz J, Pérez-Balado C, Iglesias B, Muñoz L (2009) Carbonylation with CO2 and phosphorus electrophiles: a convenient method for the synthesis of 2-oxazolidinones from 1,2-amino alcohols. Synlett 3:0395–0398

    Google Scholar 

  123. Paz J, Pérez-Balado C, Iglesias B, Muñoz L (2010) Carbon dioxide as a carbonylating agent in the synthesis of 2-oxazolidinones, 2-oxazinones, and cyclic ureas: scope and limitations. J Org Chem 75:3037–3046

    Article  CAS  Google Scholar 

  124. Yang Z-Z, Li Y-N, Wei Y-Y, He L-N (2011) Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions. Green Chem 13:2351–2353

    Article  CAS  Google Scholar 

  125. Gao J, He L-N, Miao C-X, Chanfreau S (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H,3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067

    Article  CAS  Google Scholar 

  126. Lu W, Ma J, Hu J, Song J, Zhang Z, Yang G, Han B (2014) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 using ionic liquids as a dual solvent-catalyst at atmospheric pressure. Green Chem 16:221–225

    Article  CAS  Google Scholar 

  127. Zhao Y, Yu B, Yang Z, Zhang H, Hao L, Gao X, Liu Z (2014) A protic ionic liquid catalyzes CO2 conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4-(1H,3H)-diones. Angew Chem Int Ed 53:5922–5925

    Article  CAS  Google Scholar 

  128. Zhao Y-N, Yu B, Yang Z-Z, He L-N (2014) Magnetic base catalysts for the chemical fixation of carbon dioxide to quinazoline-2,4(1H,3H)-diones. RSC Adv 4:28941–28946

    Article  CAS  Google Scholar 

  129. Lang X-D, Zhang S, Song Q-W, He L-N (2015) Tetra-butylphosphonium arginine-based ionic liquid-promoted cyclization of 2-aminobenzonitrile with carbon dioxide. RSC Adv 5:15668–15673

    Article  CAS  Google Scholar 

  130. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Reversible nonpolar-to-polar solvent. Nature 436:1102

    Article  CAS  Google Scholar 

  131. Phan L, Chiu D, Heldebrant DJ, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert CA, Liotta CL, Jessop PG (2008) Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind Eng Chem Res 47:539–545

    Article  CAS  Google Scholar 

  132. Heldebrant DJ, Yonker CR, Jessop PG, Phan L (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1:487–493

    Article  CAS  Google Scholar 

  133. Koech PK, Zhang J, Kutnyakov IV, Cosimbescu L, Lee S-J, Bowden ME, Smurthwaite TD, Heldebrant DJ (2013) Low viscosity alkanolguanidine and alkanolamidine liquids for CO2 capture. RSC Adv 3:566–572

    Article  CAS  Google Scholar 

  134. Wang C, Luo H, Jiang D, Li H, Dai S (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49:5978–5981

    Article  CAS  Google Scholar 

  135. Kikuchi S, Sekine K, Ishida T, Yamada T (2012) C-C bond formation with carbon dioxide promoted by a silver catalyst. Angew Chem 124:7095–7098

    Article  Google Scholar 

  136. Kikuchi S, Yamada T (2014) Carbon dioxide incorporation into alkyne compounds mediated by silver catalysts. Chem Rec 14:62–69

    Article  CAS  Google Scholar 

  137. Gomes CN, Blondiaux E, Thuéry P, Cantat T (2014) Metal-free reduction of CO2 with hydroboranes: two efficient pathways at play for the reduction of CO2 to methanol. Chem Eur J 20:7098–7106

    Article  CAS  Google Scholar 

  138. Tang D, Dirk-Jan Mulder D-J, Noordover BAJ, Koning CE (2011) Well-defined biobased segmented polyureas synthesis via a TBD-catalyzed isocyanate-free route. Macromol Rapid Commun 32:1379–1385

    Article  CAS  Google Scholar 

  139. Mutlu H, Ruiz J, Solleder SC, Meier MAR (2012) TBD catalysis with dimethyl carbonate: a fruitful and sustainable alliance. Green Chem 14:1728–1735

    Article  CAS  Google Scholar 

  140. Kreye O, Wald S, Meier MAR (2013) Introducing catalytic lossen rearrangements: sustainable access to carbamates and amines. Adv Synth Catal 355:81–86

    Article  CAS  Google Scholar 

  141. Islam MR, Kurle YM, Gossage JL, Benson TJ (2013) Kinetics of triazabicyclodecene-catalyzed canola oil conversion to glycerol-free biofuel using dimethyl carbonate. Energy Fuels 27:1564–1569

    Article  CAS  Google Scholar 

  142. Unverferth M, Kreye O, Prohammer A, Meier MAR (2013) Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols. Macromol Rapid Commun 34:1569–1574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo René Pérez González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santo, R.D.d.E., Capitão, R.M., González, E.R.P. (2015). Guanidines as Catalysts for Direct and Indirect CO2 Capture and Activation. In: Selig, P. (eds) Guanidines as Reagents and Catalysts II. Topics in Heterocyclic Chemistry, vol 51. Springer, Cham. https://doi.org/10.1007/7081_2015_167

Download citation

Publish with us

Policies and ethics