Skip to main content

Organic Photoredox Chemistry in Flow

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 57))

Abstract

The recent movement toward greener, more sustainable chemistry has led to the emergence of photoredox chemistry, capable of catalyzing a wide berth of chemical transformations by channeling the energy of light to reach otherwise unobtainable levels of reactivity and selectivity. A recent parallel development in the field of flow chemistry has led to the enhancement of reactivity and productivity of these photoredox processes, making it a practical method for organic synthesis. This chapter discusses recent advances in the field of organic photoredox chemistry whose reactivity or productivity has been enhanced by flow chemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For an overview of aerobic oxidations in continuous flow, see Pieber and Kappe [32].

  2. 2.

    They hypothesized that this was because of the more favorable reduction potential (E red3 = −1.51 eV vs. E red1 = −1.33 eV).

  3. 3.

    Two substrates were not accelerated in flow; however, these compounds were also problematic in batch.

Abbreviations

AIBN:

Azobisisobutyronitrile

bpy:

2,2′-Bipyridine

dF(CF3)ppy:

2-(2′,4′-Difluorophenyl)-5-trifluoromethylpyridine

dmb:

4,4′-Dimethyl-2,2′-dipyridine

DMF:

N,N-Dimethylformamide

dmp:

2,9-Dimethyl-1,10-phenanthroline

DMSO:

Dimethyl sulfoxide

DPEPhos:

Bis[(2-diphenylphosphino)phenyl]methane

DSSC:

Dye-sensitized solar cell

dtbbpy:

di-tert-Butylbipyridine

FEP:

Fluorinated ethylene propylene

HDF:

Hydrodefluorination

IC:

Interconversion

ISC:

Intersystem crossing

LED:

Light-emitting diode

OLED:

Organic light-emitting diode

PEEK:

Polyetheretherketone

PFA:

Polyfluoroalkoxy

ppy:

2,2′-Phenylpyridine

SET:

Single electron transfer

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

TMEDA:

N,N,N′,N′-Tetramethyl-1,2-diaminoethylene

TMS:

Trimethylsilyl

TOF:

Turnover frequency

UV:

Ultraviolet

Xantphos:

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

References

  1. Knowles JP, Elliott LD, Booker-Milburn KI (2012) Flow photochemistry: old light through new windows. Beilstein J Org Chem 8:2025–2052

    Article  CAS  Google Scholar 

  2. Su Y, Straathof NJ, Hessel V, Noël T (2014) Photochemical transformations accelerated in continuous‐flow reactors: basic concepts and applications. Chem Eur J 20:10562–10589

    Article  CAS  Google Scholar 

  3. Gilmore K, Seeberger PH (2014) Continuous flow photochemistry. Chem Rec 14:410–418

    Article  CAS  Google Scholar 

  4. Noel T, Wang X, Hessel V (2013) Accelerating photoredox catalysis in continuous microflow. Chim Oggi 31:10

    CAS  Google Scholar 

  5. Garlets ZJ, Nguyen JD, Stephenson CR (2014) The development of visible‐light photoredox catalysis in flow. Isr J Chem 54:351–360

    Article  CAS  Google Scholar 

  6. Gratzel M, Kalyanasundaram K (1998) Applications of functionalized transition metal complexes in photonic and optoeletronic devices. Coord Chem Rev 77:347–414

    Google Scholar 

  7. Lowry MS, Bernhard S (2006) Synthetically tailored excited states: phosphorescent, cyclometalated iridium (III) complexes and their applications. Chem Eur J 12:7970–7977

    Article  CAS  Google Scholar 

  8. Ulbricht C, Beyer B, Friebe C, Winter A, Schubert US (2009) Recent developments in the application of phosphorescent iridium (III) complex systems. Adv Mater 21:4418

    Article  CAS  Google Scholar 

  9. Graetzel M (1981) Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc Chem Res 14:376–384

    Article  CAS  Google Scholar 

  10. Meyer TJ (1989) Chemical approaches to artificial photosynthesis. Acc Chem Res 22:163–170

    Article  CAS  Google Scholar 

  11. Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254:346–354

    Article  CAS  Google Scholar 

  12. Lalevée J, Peter M, Dumur F, Gigmes D, Blanchard N, Tehfe MA, Morlet‐Savary F, Fouassier JP (2011) Subtle ligand effects in oxidative photocatalysis with iridium complexes: application to photopolymerization. Chem Eur J 17:15027–15031

    Article  CAS  Google Scholar 

  13. Lalevée J, Blanchard N, Tehfe M-A, Morlet-Savary F, Fouassier JP (2010) Green bulb light source induced epoxy cationic polymerization under air using tris (2, 2′-bipyridine) ruthenium (II) and silyl radicals. Macromolecules 43:10191–10195

    Article  CAS  Google Scholar 

  14. Howerton BS, Heidary DK, Glazer EC (2012) Strained ruthenium complexes are potent light-activated anticancer agents. J Am Chem Soc 134:8324–8327

    Article  CAS  Google Scholar 

  15. Koike T, Akita M (2014) Visible-light radical reaction designed by Ru-and Ir-based photoredox catalysis. Inorg Chem Front 1:562–576

    Article  CAS  Google Scholar 

  16. Prier CK, Rankic DA, MacMillan DW (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363

    Article  CAS  Google Scholar 

  17. Hari DP, Konig B (2014) Synthetic applications of Eosin Y in photoredox catalysis. Chem Commun 50:6688–6699

    Article  CAS  Google Scholar 

  18. Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B (2014) Batch versus flow photochemistry: a revealing comparison of yield and productivity. Chem Eur J 20:15226–15232

    Article  CAS  Google Scholar 

  19. Narayanam JM, Tucker JW, Stephenson CR (2009) Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J Am Chem Soc 131:8756–8757

    Article  CAS  Google Scholar 

  20. Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244

    Article  CAS  Google Scholar 

  21. Weiss ME, Kreis LM, Lauber A, Carreira EM (2011) Cobalt‐catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew Chem 123:11321–11324

    Article  Google Scholar 

  22. Senaweera SM, Singh A, Weaver JD (2014) Photocatalytic hydrodefluorination: facile access to partially fluorinated aromatics. J Am Chem Soc 136:3002–3005

    Article  CAS  Google Scholar 

  23. Rackl D, Kais V, Kreitmeier P, Reiser O (2014) Visible light photoredox-catalyzed deoxygenation of alcohols. Beilstein J Org Chem 10:2157–2165

    Article  CAS  Google Scholar 

  24. He Z, Bae M, Wu J, Jamison TF (2014) Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible‐light photoredox catalysis. Angew Chem Int Ed 53:14451–14455

    Article  CAS  Google Scholar 

  25. Wang X, Cuny GD, Noel T (2013) A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew Chem Int Ed 52:7860–7864

    Article  CAS  Google Scholar 

  26. Xuan J, Xiao W-J (2012) Visible-light photoredox catalysis. Angew Chem Int Ed 51:6828–6838

    Article  CAS  Google Scholar 

  27. Protti S, Fagnoni M, Ravelli D (2015) Photocatalytic C-H activation by hydrogen‐atom transfer in synthesis. ChemCatChem 7:1516–1523

    Article  CAS  Google Scholar 

  28. Xie J, Jin H, Xu P, Zhu C (2014) When C–H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Lett 55:36–48

    Article  CAS  Google Scholar 

  29. Nguyen JD, D’Amato EM, Narayanam JM, Stephenson CR (2012) Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat Chem 4:854–859

    Article  CAS  Google Scholar 

  30. Nguyen JD, Reiß B, Dai C, Stephenson CR (2013) Batch to flow deoxygenation using visible light photoredox catalysis. Chem Commun 49:4352–4354

    Article  CAS  Google Scholar 

  31. Bou-Hamdan FR, Seeberger PH (2012) Visible-light-mediated photochemistry: accelerating Ru(bpy)3 2+-catalyzed reactions in continuous flow. Chem Sci 3:1612–1616

    Article  CAS  Google Scholar 

  32. Pieber B, Kappe CO (2015) Aerobic oxidations in continuous flow. In: Topics in organometallic chemistry. Springer, Berlin, pp 1–40. doi:10.1007/3418_2015_133

  33. Appel R (1975) Tertiary phosphane/tetrachloromethane, a versatile reagent for chlorination, dehydration, and P-N linkage. Angew Chem Int Ed Engl 14:801–811

    Article  Google Scholar 

  34. Vilsmeier A, Haack A (1927) Über die Einwirkung von Halogenphosphor auf Alkyl‐formanilide. Eine neue Methode zur Darstellung sekundärer und tertiärer p‐Alkylamino‐benzaldehyde. Ber Dtsch Chem Ges 60:119–122

    Article  Google Scholar 

  35. Léonel E, Paugam J, Nédélec J (1997) A new preparative route to organic halides from alcohols via the reduction of polyhalomethanes. J Org Chem 62:7061–7064

    Article  Google Scholar 

  36. Konieczynska MD, Dai C, Stephenson CR (2012) Synthesis of symmetric anhydrides using visible light-mediated photoredox catalysis. Org Biomol Chem 10:4509–4511

    Article  CAS  Google Scholar 

  37. Shen Y, Chen C-F (2011) Helicenes: synthesis and applications. Chem Rev 112:1463–1535

    Article  CAS  Google Scholar 

  38. Hernandez-Perez AC, Vlassova A, Collins SK (2012) Toward a visible light mediated photocyclization: Cu-based sensitizers for the synthesis of [5] helicene. Org Lett 14:2988–2991

    Article  CAS  Google Scholar 

  39. Bédard A-C, Vlassova A, Hernandez-Perez AC, Bessette A, Hanan GS, Heuft MA, Collins SK (2013) Synthesis, crystal structure and photophysical properties of pyrene–helicene hybrids. Chem Eur J 19:16295–16302

    Article  CAS  Google Scholar 

  40. Hernandez‐Perez AC, Collins SK (2013) A visible‐light‐mediated synthesis of carbazoles. Angew Chem 125:12928–12932

    Article  Google Scholar 

  41. Ushakov DB, Plutschack MB, Gilmore K, Seeberger PH (2015) Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen. Chem Eur J 21:6528–6534

    Article  CAS  Google Scholar 

  42. Schümperli MT, Hammond C, Hermans I (2012) Developments in the aerobic oxidation of amines. ACS Catal 2:1108–1117

    Article  CAS  Google Scholar 

  43. Largeron M (2013) Protocols for the catalytic oxidation of primary amines to imines. Eur J Org Chem 2013:5225–5235

    Article  CAS  Google Scholar 

  44. Patil RD, Adimurthy S (2013) Catalytic methods for imine synthesis. Asian J Org Chem 2:726–744

    Article  CAS  Google Scholar 

  45. Ryland BL, Stahl SS (2014) Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angew Chem Int Ed 53:8824–8838

    Article  CAS  Google Scholar 

  46. Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc 135:10863–10869

    Article  CAS  Google Scholar 

  47. Yuan Q-L, Zhou X-T, Ji H-B (2010) Efficient oxidative coupling of amines to imines catalyzed by manganese (III) meso-tetraphenylporphyrin chloride under ambient conditions. Catal Commun 12:202–206

    Article  CAS  Google Scholar 

  48. Chu G, Li C (2010) Convenient and clean synthesis of imines from primary benzylamines. Org Biomol Chem 8:4716–4719

    Article  CAS  Google Scholar 

  49. Choi H, Doyle MP (2007) Oxidation of secondary amines catalyzed by dirhodium caprolactamate. Chem Commun 745–747

    Google Scholar 

  50. Wu X-F, Petrosyan A, Ghochikyan TV, Saghyan AS, Langer P (2013) Metal-free oxidation of benzyl amines to imines. Tetrahedron Lett 54:3158–3159

    Article  CAS  Google Scholar 

  51. Achar TK, Maiti S, Mal P (2014) IBX works efficiently under solvent free conditions in ball milling. RSC Adv 4:12834–12839

    Article  CAS  Google Scholar 

  52. Jiang G, Chen J, Huang J-S, Che C-M (2009) Highly efficient oxidation of amines to imines by singlet oxygen and its application in ugi-type reactions. Org Lett 11:4568–4571

    Article  CAS  Google Scholar 

  53. To WP, Tong GSM, Lu W, Ma C, Liu J, Chow ALF, Che CM (2012) Luminescent organogold (III) complexes with long‐lived triplet excited states for light‐induced oxidative C-H bond functionalization and hydrogen production. Angew Chem Int Ed 51:2654–2657

    Article  CAS  Google Scholar 

  54. Ushakov DB, Gilmore K, Kopetzki D, McQuade DT, Seeberger PH (2014) Continuous‐flow oxidative cyanation of primary and secondary amines using singlet oxygen. Angew Chem Int Ed 53:557–561

    Article  CAS  Google Scholar 

  55. Vukelić S, Ushakov DB, Gilmore K, Koksch B, Seeberger PH (2015) Flow synthesis of fluorinated α‐amino acids. Eur J Org Chem 2015:3036–3039

    Article  CAS  Google Scholar 

  56. Ushakov DB, Gilmore K, Seeberger PH (2014) Consecutive oxygen-based oxidations convert amines to α-cyanoepoxides. Chem Commun 50:12649–12651

    Article  CAS  Google Scholar 

  57. Tucker JW, Zhang Y, Jamison TF, Stephenson CR (2012) Visible‐light photoredox catalysis in flow. Angew Chem Int Ed 51:4144–4147

    Article  CAS  Google Scholar 

  58. Beatty JW, Stephenson CR (2014) Synthesis of (−)-pseudotabersonine,(−)-pseudovincadifformine, and (+)-coronaridine enabled by photoredox catalysis in flow. J Am Chem Soc 136:10270–10273

    Article  CAS  Google Scholar 

  59. Beatty JW, Stephenson CRJ (2015) Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc Chem Res 48:1474–1484

    Article  CAS  Google Scholar 

  60. Neumann M, Zeitler K (2012) Application of microflow conditions to visible light photoredox catalysis. Org Lett 14:2658–2661

    Article  CAS  Google Scholar 

  61. Barton DH, McCombie SW (1975) A new method for the deoxygenation of secondary alcohols. J Chem Soc Perkin Trans 1:1574–1585

    Article  Google Scholar 

  62. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330

    Article  CAS  Google Scholar 

  63. Reade SP, Mahon MF, Whittlesey MK (2009) Catalytic hydrodefluorination of aromatic fluorocarbons by ruthenium N-heterocyclic carbene complexes. J Am Chem Soc 131:1847–1861

    Article  CAS  Google Scholar 

  64. Zhan J-H, Lv H, Yu Y, Zhang J-L (2012) Catalytic C-F bond activation of perfluoroarenes by tricoordinated gold(I) complexes. Adv Synth Catal 354:1529–1541

    Article  CAS  Google Scholar 

  65. Aizenberg M, Milstein D (1994) Catalytic activation of carbon-fluorine bonds by a soluble transition-metal complex. Science 265:359–361

    Article  CAS  Google Scholar 

  66. Aizenberg M, Milstein D (1995) Homogeneous metal-catalyzed hydrogenolysis of C-F bonds. J Am Chem Soc 117:8674–8675

    Article  CAS  Google Scholar 

  67. Archibald SJ, Braun T, Gaunt JA, Hobson JE, Perutz RN (2000) Chemistry of nickel tetrafluoropyridyl derivatives: their versatile behaviour with Bronsted acids and the Lewis acid BF3. J Chem Soc Dalton Trans 2013–2018

    Google Scholar 

  68. Arndt P, Spannenberg A, Baumann W, Burlakov VV, Rosenthal U, Becke S, Weiss T (2004) Reactions of zirconocene 2-vinylpyridine complexes with diisobutylaluminum hydride and fluoride. Organometallics 23:4792–4795

    Article  CAS  Google Scholar 

  69. Breyer D, Braun T, Klaering P (2012) Synthesis and reactivity of the fluoro complex trans- [Pd(F)(4-C5NF4)(iPr2PCH2CH2OCH3)2]: C-F bond formation and catalytic C-F bond activation reactions. Organometallics 31:1417–1424

    Article  CAS  Google Scholar 

  70. Edelbach BL, Rahman AKF, Lachicotte RJ, Jones WD (1999) Carbon-fluorine bond cleavage by zirconium metal hydride complexes. Organometallics 18:3170–3177

    Article  CAS  Google Scholar 

  71. Fischer P, Goetz K, Eichhorn A, Radius U (2012) Decisive steps of the hydrodefluorination of fluoroaromatics using Ni(NHC)(2). Organometallics 31:1374–1383

    Article  CAS  Google Scholar 

  72. Jaeger-Fiedler U, Klahn M, Arndt P, Baumann W, Spannenberg A, Burlakov VV, Rosenthal U (2007) Room-temperature catalytic hydrodefluorination of pentafluoro-pyridine by zirconocene fluoro complexes and diisobutylaluminumhydride. J Mol Catal A Chem 261:184–189

    Article  CAS  Google Scholar 

  73. Kuehnel MF, Lentz D, Braun T (2013) Synthesis of fluorinated building blocks by transition-metal-mediated hydrodefluorination reactions. Angew Chem Int Ed 52:3328–3348

    Article  CAS  Google Scholar 

  74. Lv H, Cai Y-B, Zhang J-L (2013) Copper-catalyzed hydrodefluorination of fluoroarenes by copper hydride intermediates. Angew Chem Int Ed 52:3203–3207

    Article  CAS  Google Scholar 

  75. Andrews RS, Becker JJ, Gagné MR (2012) A photoflow reactor for the continuous photoredox‐mediated synthesis of C‐glycoamino acids and C‐glycolipids. Angew Chem Int Ed 51:4140–4143

    Article  CAS  Google Scholar 

  76. Larraufie MH, Pellet R, Fensterbank L, Goddard JP, Lacôte E, Malacria M, Ollivier C (2011) Visible‐light‐induced photoreductive generation of radicals from epoxides and aziridines. Angew Chem Int Ed 50:4463–4466

    Article  CAS  Google Scholar 

  77. Lam K, Markó IE (2008) Using toluates as simple and versatile radical precursors. Org Lett 10:2773–2776

    Article  CAS  Google Scholar 

  78. Saito I, Ikehira H, Kasatani R, Watanabe M, Matsuura T (1986) Photoinduced reactions. 167. Selective deoxygenation of secondary alcohols by photosensitized electron-transfer reaction. A general procedure for deoxygenation of ribonucleosides. J Am Chem Soc 108:3115–3117

    Article  CAS  Google Scholar 

  79. Prudhomme DR, Wang Z, Rizzo CJ (1997) An improved photosensitizer for the photoinduced electron-transfer deoxygenation of benzoates and m-(trifluoromethyl) benzoates. J Org Chem 62:8257–8260

    Article  CAS  Google Scholar 

  80. Shen B, Jamison TF (2013) Continuous flow photochemistry for the rapid and selective synthesis of 2′-deoxy and 2′, 3′-dideoxynucleosides. Aust J Chem 66:157–164

    Article  CAS  Google Scholar 

  81. Bordoni A, de Lederkremer RM, Marino C (2006) Photoinduced electron-transfer α-deoxygenation of aldonolactones. Efficient synthesis of 2-deoxy-d-arabino-hexono-1, 4-lactone. Carbohydr Res 341:1788–1795

    Article  CAS  Google Scholar 

  82. Bordoni A, de Lederkremer RM, Marino C (2008) 5-Deoxy glycofuranosides by carboxyl group assisted photoinduced electron-transfer deoxygenation. Tetrahedron 64:1703–1710

    Article  CAS  Google Scholar 

  83. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  84. Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. J Anal Appl Pyrolysis 60:41–54

    Article  CAS  Google Scholar 

  85. Scholze B, Hanser C, Meier D (2001) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part II. GPC, carbonyl groups, and C-13-NMR. J Anal Appl Pyrolysis 58:387–400

    Article  Google Scholar 

  86. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  87. Nguyen JD, Matsuura BS, Stephenson CR (2014) A photochemical strategy for lignin degradation at room temperature. J Am Chem Soc 136:1218–1221

    Article  CAS  Google Scholar 

  88. Mamedov V, Kalinin A (2010) Pyrrolo [1, 2-a] quinoxalines based on quinoxalines (Review). Chem Heterocycl Compd 46:641–664

    Article  CAS  Google Scholar 

  89. Kobayashi K, Irisawa S, Matoba T, Matsumoto T, Yoneda K, Morikawa O, Konishi H (2001) Synthesis of pyrrolo 1,2-a quinoxaline derivatives by Lewis acid-catalyzed reactions of 1-(2-isocyanophenyl)pyrroles. Bull Chem Soc Jpn 74:1109–1114

    Article  CAS  Google Scholar 

  90. Kobayashi K, Matsumoto T, Irisawa S, Yoneda K, Morikawa O, Konishi H (2001) Synthesis of 4-(1-dialkylaminoalkyl)pyrrolo 1,2-a quinoxalines. Heterocycles 55:973–980

    Article  CAS  Google Scholar 

  91. Suzuki A, Heck RF, Negishi E-I (2010) The Nobel prize in chemistry 2010. Nobelprize.org. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/. 28 Sept 2015

  92. Tucker JW, Stephenson CR (2012) Shining light on photoredox catalysis: theory and synthetic applications. J Org Chem 77:1617–1622

    Article  CAS  Google Scholar 

  93. Narayanam JMR, Stephenson CRJ (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113

    Article  CAS  Google Scholar 

  94. Teply F (2011) Photoredox catalysis BY Ru(bpy)3 2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalyst and its 20th century roots. Collect Czech Chem Commun 76:859–917

    Article  CAS  Google Scholar 

  95. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532

    Article  CAS  Google Scholar 

  96. Zeitler K (2009) Photoredox catalysis with visible light. Angew Chem Int Ed 48:9785–9789

    Article  CAS  Google Scholar 

  97. Furst L, Narayanam JM, Stephenson CR (2011) Total synthesis of (+)‐gliocladin C enabled by visible‐light photoredox catalysis. Angew Chem Int Ed 50:9655–9659

    Article  CAS  Google Scholar 

  98. Straathof NJ, Gemoets HP, Wang X, Schouten JC, Hessel V, Noël T (2014) Rapid trifluoromethylation and perfluoroalkylation of five‐membered heterocycles by photoredox catalysis in continuous flow. ChemSusChem 7:1612–1617

    Article  CAS  Google Scholar 

  99. Straathof N, Osch D, Schouten A, Wang X, Schouten J, Hessel V, Noël T (2014) Visible light photocatalytic metal-free perfluoroalkylation of heteroarenes in continuous flow. J Flow Chem 4:12–17

    Article  CAS  Google Scholar 

  100. Laquidara J (2001) 3-Ethoxy(thiocarbonyl)thio quinoline explosion. Chem Eng News 79:6

    Article  CAS  Google Scholar 

  101. Abeywickrema AN, Beckwith ALJ (1986) Mechanistic and kinetic studies of the thiodediazoniation reaction. J Am Chem Soc 108:8227–8229

    Article  CAS  Google Scholar 

  102. Straathof NJ, Tegelbeckers BJ, Hessel V, Wang X, Noel T (2014) A mild and fast photocatalytic trifluoromethylation of thiols in batch and continuous-flow. Chem Sci 5:4768–4773

    Article  CAS  Google Scholar 

  103. Pluta R, Nikolaienko P, Rueping M (2014) Direct catalytic trifluoromethylthiolation of boronic acids and alkynes employing electrophilic shelf-stable N-(trifluoromethylthio)phthalimide. Angew Chem Int Ed 53:1650–1653

    Article  CAS  Google Scholar 

  104. Alazet S, Zimmer L, Billard T (2013) Base-catalyzed electrophilic trifluoromethylthiolation of terminal alkynes. Angew Chem Int Ed 52:10814–10817

    Article  CAS  Google Scholar 

  105. Hu F, Shao X, Zhu D, Lu L, Shen Q (2014) Silver-catalyzed decarboxylative trifluoromethylthiolation of aliphatic carboxylic acids in aqueous emulsion. Angew Chem Int Ed 53:6105–6109

    Article  CAS  Google Scholar 

  106. Billard T, Roques N, Langlois BR (1999) Synthetic uses of thio- and selenoesters of trifluoromethylated acids. 1. Preparation of trifluoromethyl sulfides and selenides. J Org Chem 64:3813–3820

    Article  CAS  Google Scholar 

  107. Boiko VN, Shchupak GM, Yagupolskii LM (1977) Reaction of ion-radical perfluoroalkylation. 1. Trifluoromethylation of thiols, initiated by UV-irradiation. Zh Org Khim 13:1057–1061

    CAS  Google Scholar 

  108. Boiko VN, Dashevskaya TA, Shchupak GM, Yagupolskii LM (1979) Study on ion-radical perfluoroalkylation reaction. 6. Trifluoromethylation of 2-mercaptopyrimidines. Zh Org Khim 15:396–400

    CAS  Google Scholar 

  109. Boiko VN, Shchupak GM, Yagupolskii LM (1985) 1-Substituted 3,5-bis(trifluoromethylthio)benzole and 3,5-bis(trifluoromethylsulfonyl)benzole. Zh Org Khim 21:1470–1477

    CAS  Google Scholar 

  110. Koshechko VG, Kiprianova LA, Fileleeva LI (1992) A new convenient method for the synthesis of perfluoroalkylarylsulfides. Tetrahedron Lett 33:6677–6678

    Article  CAS  Google Scholar 

  111. Koshechko VG, Kiprianova LA, Fileleeva LI, Rozhkova ZZ (1995) Electrochemical initiation by sulfur-dioxide of radical-chain trifluoromethylation processes of thiophenols with bromotrifluoromethane. J Fluor Chem 70:277–278

    Article  Google Scholar 

  112. Koshechko VG, Kiprianova LA, Fileleeva LI, Tsanov KG (1999) Fluoroalkylation of thiophenols with Freons using conjugated electron transfer mediator systems composed of methylviologen-SO2 and I-2-SO2. J Fluor Chem 96:163–166

    Article  CAS  Google Scholar 

  113. Kieltsch I, Eisenberger P, Togni A (2007) Mild electrophilic trifluoromethylation of carbon- and sulfur-centered nucleophiles by a hypervalent iodine(III)-CF3 reagent. Angew Chem Int Ed 46:754–757

    Article  CAS  Google Scholar 

  114. Eisenberger P, Gischig S, Togni A (2006) Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chem Eur J 12:2579–2586

    Article  CAS  Google Scholar 

  115. Umemoto T, Ishihara S (1993) Power-variable electrophilic trifluoromethylating agents - S-(trifluoromethyl)dibenzothiophenium, Se-(trifluoromethyl)dibenzoselenophenium, and Te-(trifluoromethyl)dibenzotellurophenium salt system. J Am Chem Soc 115:2156–2164

    Article  CAS  Google Scholar 

  116. Danishefsky SJ, Allen JR (2000) From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew Chem Int Ed 39:836–863

    Article  CAS  Google Scholar 

  117. Doores KJ, Gamblin DP, Davis BG (2006) Exploring and exploiting the therapeutic potential of glycoconjugates. Chem Eur J 12:656–665

    Article  CAS  Google Scholar 

  118. Hakomori S, Zhang YM (1997) Glycosphingolipid antigens and cancer therapy. Chem Biol 4:97–104

    Article  CAS  Google Scholar 

  119. Kuberan B, Lindhardt RJ (2000) Carbohydrate based vaccines. Curr Org Chem 4:653–677

    Article  CAS  Google Scholar 

  120. Sears P, Wong C-H (1999) Carbohydrate mimetics: a new strategy for tackling the problem of carbohydrate-mediated biological recognition. Angew Chem Int Ed 38:2300–2324

    Article  Google Scholar 

  121. Lin CH, Lin HC, Yang WB (2005) exo-Glycal chemistry: general aspects and synthetic applications for biochemical use. Curr Top Med Chem 5:1431–1457

    Article  CAS  Google Scholar 

  122. Marcaurelle LA, Bertozzi CR (1999) New directions in the synthesis of glycopeptide mimetics. Chem Eur J 5:1384–1390

    Article  CAS  Google Scholar 

  123. Nicotra F (1997) In: Driguez H, Thiem J (eds) Glycoscience synthesis of substrate analogs and mimetics. Springer, Berlin, pp 55–83

    Chapter  Google Scholar 

  124. Yang GL, Schmieg J, Tsuji M, Franck RW (2004) The C-glycoside analogue of the immunostimulant alpha-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed 43:3818–3822

    Article  CAS  Google Scholar 

  125. Zou W (2005) C-glycosides and aza-C-glycosides as potential glycosidase and glycosyltransferase inhibitors. Curr Top Med Chem 5:1363–1391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry Gilmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plutschack, M.B., Correia, C.A., Seeberger, P.H., Gilmore, K. (2015). Organic Photoredox Chemistry in Flow. In: Noël, T. (eds) Organometallic Flow Chemistry. Topics in Organometallic Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/3418_2015_155

Download citation

Publish with us

Policies and ethics