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Abs t rac t .  Contrary to the 2D case, a 3D hole is not a subset of the 
3D space. It is therefore not possible to use connected component search 
algorithms for detecting and suppressing 3D holes. 
In this paper, we propose an algorithm for closing 3D holes. It is based 
on properties of the previously introduced notion of topological numbers. 
Our algorithm is linear in time and it allows to control the size of the 
holes which are closed. As far as we know, this is the first 3D-hole closing 
algorithm. 

1 Introduction 

In 3D image analysis, the reconstructed objects which result from the segmen- 
tat ion process have sometimes unwanted holes. These holes may be considered 
as an effect of noise. In many  applications, the noisy holes can be characterized 
by their size: larger holes are actually features of the object, whereas a large 
amount  of small holes are irrelevant. 

In our approach, we consider the notion of hole from a topological point of 
view. It is important  to make the difference between holes, cavities and concav- 
ities. Concavities are concave shapes of the contour of the object. Cavities are 
hollows in the object, or more formally, bounded connected components of the 
background. An object has a hole whenever it contains a closed path  which can- 
not be transformed to a single point by a sequence of elementary deformations 
inside the object. For example, a ring has one hole and no cavity, whereas a 
hollow torus with one cavity has two holes. The closing of holes in 3D images 
is much more difficult than in 2D. Indeed, a hole in a 2D image is a cavity and 
thus a region which is a bounded well defined set of points, whereas it is not the 
case in 3D. 

We present in this paper a 3D-hole closing algorithm, which original imple- 
mentat ion allows to control the size of the holes that  are closed. The closing 
of the hole is actually performed by building a surface such as a kind of patch 
which obstructs the hole. As far as we know, this is the first 3D-hole closing 
algorithm. 

2 Basic notions 

We recall some basic notions of 3D discrete topology (see [8]). 
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We denote E = Z 3. A point z E E is defined by (xl, x2, a3) with xi E Z. We 
consider the three neighborhoods: 

N26(x) = {x' C E; Max[Ix1-  x~], Ix2-  x~l, Ix3-  x~3]] < 1}, 
Nr = {x' E E; Ix1 - xll + I x ; -  x~l + Ix3-  x~3l <_ 1}, 
Nls(x)  = {x' �9 E; I~1 - ~il + 1~2 - ~1  + Ix3 - x~l -< 2) n N ~ ( x ) .  

We denote N~(x) = N6(x ) \  {x}, A~6(x ) = N26(x)\  {x}, N~s(x ) = N l s ( x ) \  {x}. 
Two points x and y are said to be n-adjacent (n = 6, 18, 26) if y �9 N~* (x). 
We denote N+(x) = N•s(X ) \ N~(z) and N+(x) = N~6(x ) \ N~'s(x ). We call 
respectively 5, 18, 26-neighbors of z the points of N~(z),  N+(z), and N+(x). 
An n-path 7r is a sequence of points x0..z~, with xi n-adjacent to xi-1 for i = 1..k. 
The length of Tr is equal to k. If x0 = xk, ~r is closed. The inverse of ~r is the path 
7r - 1  = X k . . X  O. 

An object X C E is said to be n-connected if for any two points of X, there 
is an n-path in X between these two points. The equivalence classes relative 
to this relation are the n-connected components of X. The set composed of all 
the n-connected components of X is denoted Cn(X). The set of all n-connected 
components of X n-adjacent to a point x is denoted C~(X). Note that  C~(X) 
and C~(X) are sets of subsets of X and not sets of points. 
As in 2D, if we use an n-connectivity for X we have to use another g-connectivity 
for X, i.e. the 6-connectivity for X is associated to the 18 or the 26 connectivity 
for X (and vice versa). This is necessary for having a correspondence between the 
topology of X and the topology of X. Furthermore, it is sometimes necessary 
to distinguish the 6-connectivity associated with the 18-connectivity and the 
6-connectivity associated with the 26-connectivity. Whenever we will have to 
make this distinction, a 6+-notion will indicate a 6-notion associated with the 
18-connectivity. So we can have (n, ~) = (6, 26), (26, 6), (6 +, 18) or (18, 6+). 

If X is finite, the infinite connected component of X is called the background, 
the other connected components of X are called the cavities. 

3 N o t i o n  o f  h o l e  

The notion of a hole is not simple to define. Let X be a subset of E. The presence 
of a hole in X is detected whenever there is a closed path in X that  cannot be 
deformed in X to a single point. For example a hollow ball has one cavity and 
no hole, a solid torus has no cavity and one hole, a hollow torus has one cavity 
and two holes. Note that there is a correspondence between the holes of X and 
the ones of X, e.g. the complementary of a hollow torus has two holes. 
We give below a definition of deformation (see [1, 7]). 
Let p E X be a point, called the base point. Let 7 C X and 7' C X be two 
closed n-paths containing p. We say that 7' is an elementary deformation of 7, 
which is denoted 7 ~ 7', if 7 and 7' are the same but in a little portion P: 
- for n = 6, P is an unit square (a 2 x 2 square); 
- for n = 6 + , 18, 26, P is an unit cube (a 2 x 2 x 2 cube). 
We say that 7' is a deformation of 7 or 7 --- 7' if there is a sequence of closed 
n-paths 70-.7k such that 7 = 70, 7' = 7k and 7i-1 ~ 7i for i = 1..k. 
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The classes of equivalence of the closed paths under the relation ___ constitute 
a group II~(p, X) which is the fundamental n-group (or Poincar~ group) with 
base point p. As in the continuous spaces, H~ (p, X) reflects the structure of the 
holes (or tunnels) in X. For example, the fundamental group of a hollow torus 
is a free group on two generators. 

Note that the choice of the base point is free, i.e., Fin(p, X) is isomorphic to 
H .  (q, X) provided p and q belong to the same n-connected component of X. 

4 T o p o l o g i c a l  n u m b e r s  

Let X be a subset of E. A point x E X is said to be n-simple (for X)  if 
its removal does not change the topology of the image, i.e., there is a one to 
one correspondence between the n-connected components of X, the g-connected 
components of X, the n-holes of X, and the n-connected components of X \ {x}, 
the g-connected components of X U {x}, the n-holes of X \ {x}, respectively. 
The set Y is (lower) n-homotopic to the set X if Y may be obtained from X by 
deleting n-simple points. If Y is lower n-homotopic to X, the set S = X \ Y is 
called a (lower) n-simple set. 

Let X C E and x E E. The geodesic n-neighborhood of x inside X of order 
k is the set N~(x, X) defined recursively by: 
N~(x, X) = N~(x) NX and N~(x, X) = U{N,(y)NN~6(x)NX, y E N~-Z(x, X)}. 
In other words N~(x, X) is the set composed of all points y of N~6(x ) n X such 
that there exists an n-path rr from x to y of length less than or equal to k, all 
points of 7r, except possibly x, belonging to N~6(x ) NX. We give now a definition 
of topological numbers [4, 3, 2]: 

Defini t ion 1. Let X be a subset of E and x be a point of E. 
The geodesic neighborhoods G,(x, X) are defined by: 

a6(x,x) : a6+(x,X) = N g ( x , X ) ;  

The topological numbers Tn (x, X) are defined by: 

T6(x, X) = #C6[G6 (x, X)]; T6+ (x, X) = #C6[G6+ (x, X)]; 
Tls(x, X) : 4/:(Jls[Gls(x, X)]; T26(x, X) : #C26[V26(x, X)]. 

These numbers lead to a characterization of simple points ([4, 3]): 

T h e o r e m 2 .  Let X be a subset o re  and x be a point of X: 
x is an n-simple point r Tn (x, X) = 1 and T~(x, X) = 1. 

If we use the n-connectivity for X and the g-connectivity for X, Tn(x, X) 
and T-~(x,-X) are considered for describing the topological characteristics of the 
point x. Other characterizations of simple points have been proposed. The major 
interest of the characterization based upon the topological numbers is that it is 
easy to check; furthermore, the topological numbers may be used as general 
describers of the local topological configuration of a point (see [9]): 



39 

D e f i n i t i o n 3 .  Let X be a subset of E and x be a point of X. We denote T = 
T,~ (x, X) and T = TK(x, X) .  According to the different possible values of T and 
T, the point x is classified as follows: 

T = O: isolated point," T = O: interior point; T ~ O: border point 
T = 1, T = 1: simple point 

T = 2, T = 1: simple 1D isthmus; T = 1, T = 2: simple 2D isthmus 
T > 3, T = 1: simple ID junction; T = 1, T >_ 3: simple 2D junction 

T > 2, T >_ 2: multiple isthmus 
T >_ 2: 1D isthmus; T >_ 2: 2D isthmus 

T > 2 or T > 2: isthmus 

5 Topological hull 

We introduce the notion of topological hull: 

D e f i n i t i o n 4 .  Let X and Y be finite subsets of E such that  X C Y. 
We say that  Y is a topological hull of X ,  if Y has no holes and no cavities and 
if, for each x of Y \ X, the set Y \ {x} has a hole or a cavity. 

The two following theorems will help us to find a way for extracting a topo- 
logical hull of a set X (the proofs may be found in [3] and in [4]); 

T h e o r e m  5. Let X C 
An n-component of X 
An n-component of X 
isthmus. 

E and x E X .  Suppose we remove x from X :  
is removed r x is an isolated point; 
is created or an n-hole of X is removed r162 x is a 1D 

T h e o r e m  6. Let X C E and x E X .  Suppose we remove x from X :  
An-~-component of X is created ~ x is an interior point," 
An -~-component of X is removed or an n-hole of X is created z~ x is a 2D 
isthmus. 

The following theorem gives a local characterization of the class of sets which 
are topological hulls relatively to the class of sets which have no holes and no 
cavities: 

T h e o r e m  7. Let X and Y be finite subsets of E such that X C Y .  
Suppose that Y has no cavities and no holes, then: 
Y is a topological hull of X if  and only if, for each x o f Y  \ X ,  x is an interior 
point or a 2D isthmus for Y ,  i.e., T~(z, Y )  # 1. 

Proof. Suppose Y has no cavities and no holes. 
i) Suppose Tw(x, Y) = h 

- if T,~ (x, Y) = 1, x is simple; 
- if T,~(z, Y) = 0, z is an isolated point and, from Th. 5 and 6, the only homo- 
topical change induced by the removal of x, is the deletion of a component  of Y; 
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- if T~(x, Y) _> 2, x is a 1D isthmus and, from Th. 5 and 6, since Y has no holes, 
the only homotopical change induced by the removal of x, is the creation of a 
component of Y. 
In all cases Y cannot be a topological hull. 

ii) Suppose T~(x, Y) 5s 1. 
- if T~(x, Y) = 0, x is an interior point; the removal of x would create a cavity 
(Th. 6); 

- if T~(x, Y) _> 2, a: is a 2D-isthmus; since Th. 6 and since Y has no cavities, the 
removal of x would create a hole. [] 

Let X be a subset of E. The following definition introduces a binary relation 
h which is defined on the class of all subsets of E containing X. 

D e f i n i t i o n 8 .  Let X be a subset of E. We define the binary relation h: 
V U C E ,  V V C E s u c h t h a t X C U a n d X C V ,  

V e h(U) ~ 3z E U \ X,  such that T~(x, U) = 1 and V = U \ {x}. 
Let B C E, with X C B and Y C E. We say that Y E h~~ if there is 
a sequence B = yo ,y1  ...,y~ = y ,  such that y i  E h(Y i-1) and such that  

h(Y) = O. 

The following corollary is a direct consequence of the proof of Th. 7 : 

C o r o l l a r y  9. Let X and B be finite subsets of E such that X C B and such 
that B has no cavities and no holes: 

for each subset Y orE, i f Y  E h~(B),  then Y is a topological hull of X .  

The Def. 8 and Cor. 9 give a method for extracting a topological hull of a set 
X. We compute a bounding box B which has no cavities and no holes and which 
contains X. We iteratively delete the points of B which do not belong to X and 
which are not interior point and not 2D isthmus. We repeat this procedure until 
idempotence. We have: 

P r o p e r t y  10. A topological hull may be obtained in linear time with linear 

space. 

Proof. Let B be a cube which strictly contains X. t3 has no cavities and no 
holes. We consider a list L which, at any step of the procedure, contains all 
border points of the actual set y i .  The list L is initialized with border points 
of B. The procedure consists in extracting the first point ae of L and checking if 
this point satisfies the above mentioned conditions for deletion. If yes, the point 
x is deleted and the points 26-adjacent to m are inserted in L. The procedure is 
repeated until L is empty. 
Note that  L necessarily contains all candidates for deletion of the actual set yi .  
The number of times a given point is inserted in L is bounded by a constant 

(26). [] 

In figure 1, examples of topological hulls are given. We can see in the example 
given figure 1 (d) that the added surface may be not centered. In the next section, 
we will see how to use the distance transform to extract well centered surfaces. 
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Fig. 1. (b) and (d) are respectively the topological hulls of (a) and (c). 

6 T o p o l o g i c a l  h u l l  d i r e c t e d  b y  t h e  d i s t a n c e  t r a n s f o r m  

In the following, we are going to show how the distance transform can be intro- 
duced in the computation of the topological hull to control the process to obtain 
a centered topological hull. 

6.1 P r i n c i p l e  

Let d be a distance over E = Z 3 and a given X C E. We call r the result of the 
distance transform such that: Vx e E,  r  = ~i~;{d(x, y)} 

We have seen previously that the topological hull is not unique because sev- 
eral points are topologically speaking equivalent candidates to be used to build 
such a hull. The most important  drawback that we would want to avoid is to ob- 
tain a surface which has the tendency to "go away" from the object, as illustrated 
in the figure 1 (d). 

We use the distance transform as a constraint in order to restrict the choice of 
the possible points to build the topological hull. The points are sorted according 
to their decreasing distance from the object. Then, the previously described 
algorithm to construct the topological hull is applied, but we process the points 
according to their decreasing distance order. The furthest points from the object 
are going to be processed first, and then, successively, the closest points. When 
a point is processed, it is eliminated if it does not satisfy the surviving criteria. 
In this case, its neighborhood is scanned and the points which are not already 
inserted in the list to be processed are then inserted. By ordering the points 
according to their distance from the object and processing them in the decreasing 
order, we are going to eliminate first the furthest points, and thus, the first points 
which are going to survive to the elimination process will be the closest to the 
object. 

In discrete spaces, one can find several definitions of distance [5, 6]. For ex- 
ample we will call D6 the distance in which all the points in N~ (x) are considered 
distant of 1 from the point x, and we can define similarly D26 in which the points 
in N~6(x ) are at distance 1 from x. The choice of the distance has an influence 
on the resulting topological hull. The figure 2 presents an elementary object (a) 
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which has been processed by different types of classical discrete distances. One 
can note that the shape of the produced surface differs. 

Fig. 2. (a): Initial object; The topological hulls using : (b)the D~ distance, (c): the D26 
distance, (d): The chamfer distance (3-4-5). 

6.2 P r o p e r t i e s  

The topological hull directed by the distance transform has several interesting 
properties which will be the topic of a future article. We just wish to mention 
the two main ones here. 

The first interesting property of the surfaces built by the topological hull 
directed by the distance transform is that it looks centered. By centered, we 
mean that the points which are actually chosen to build the surface from all the 
possible ones belong to the set of the closest points from the object, having the 
effect of building a surface close to the object. The consequence is to avoid to 
obtain such a topological hull as previously illustrated in figure 1 (d). 

The second important  property is that we have the ability to control the size 
of the holes which are going to be closed. Indeed, as we previously mentioned, 
the generic holes closing process is going to process all of the points which have 
been sorted according to the decreasing order of their distance value. In other 
words, the process starts with the highest distance value found in the image, 
down to the lowest. Let us suppose now that we do not start from the highest 
distance value, but from an arbitrary given value e. Then, all the points with 
a greater distance value will not be modified, and thus the holes which size is 
greater than e will not be closed. We will call e the threshold. The notion of size 
that we are mentioning directly comes from the distance transform. The size of a 
hole can be seen as the smallest radius of the spheres (in the sense of the chosen 
distance) which one can fit in the hole. 

The figure 3 presents an example of the control of the size of the closed 
holes. The initial object (a) is a half-sphere with several holes of various sizes. 
In figure 3 (b) we set a hole size of e = 2, and one can see that the smallest 
holes have been closed. Then on (c) we set the threshold e to the maximum size 
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Fig. 3. (a): initial image of a half-sphere with holes. (b): Result of the algorithm with 
c = 2. (c): Result of the algorithm with e > 2 

it can be seen that all the holes have been closed by the construction of the 
corresponding patch of surfaces. 

Another example is presented on figure 4 on a biomedical image of a vertebra. 
The figure 4 (a), (b) and (c) illustrate how the threshold can be used to keep 
relevant holes and eliminate the holes which correspond to noise. (a) is the initial 
image resulting from the segmentation process applied to the acquisition. (b) is 
the result with c = 2 and several irrelevant holes remaining in the main body of 
the vertebra may be observed. (c) is obtained with a better suited value of the 
threshold c = 3. 

The influence of the discrete distance can be seen on the same figure 4. The 
figure 4 (d), (e) and (f) present the centered topological hull obtained with a 
maximum value of the threshold and respectively the discrete distances D6, D26 
and the chamfer(3-4-5) distance. 

7 C o m p l e x i t y  o f  t h e  c e n t e r e d  t o p o l o g i c a l  h u l l  

c o n s t r u c t i o n  

Let us consider that we have an image with n points. We can claim that  in order 
to build the topological hull, we need to access each point of the image at least 
once leading to a complexity of at least O(n). In addition to that,  as we have 
to process the points in the decreasing order of their distance value, we must 
sort them according to their distance value, and finally, perform the individual 
deletion process of each point. 

Concerning the sorting step~ we must distinguish two cases according to the 
information we have about the possible values of the distance transform. 

Suppose that we do not have any information about the possible values of 
the distance transform other that r satisfies the definition of the distance and 
that the distance values are integers. Then, while we scan the initial image, we 
have to sort the points one by one according to their distance value when we 
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Fig. 4. Application of the 3D holes closing algorithm to an image of a vertebra. The 
26-connectivity for the object is used.(a) : initial image (7 slices). (b) : e=2. (c): e=3. 
(d), (e), (f): Maximum value of e using respectively the D6, D2~ and the chamfer(3-4-5) 
distances. 

encounter them. This step can be bounded by O(n x log(n)) leading to a global 
complexity of O(n x log(n)). 

Suppose that we know that ~ will produce the k first integer values, then the 
sorting may be done in an array of size k. When we encounter a value of distance 
transform, it is then possible to access in constant time its corresponding list of 
points by an index and then to add still in constant time the point in the list. 
Thus, in this later case, we have a linear complexity of O(n). 

We do not include in our complexity evaluation the computation of the dis- 
tance transform which may be dependant of the discrete distance which is used. 
Furthermore, in a more general approach a function different from a distance 
transform might be used to sort the points, therefore leading to a different com- 
plexity. 

8 Algor i thm:  hierarchical list 

As seen in the previous section, during the conditional shrinking process, we 
start by suppressing the points which are the furthest from the feature elements. 
This method is implemented by using a hierarchical list. 
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D e s c r i p t i o n  o f  t h e  h i e r a r c h i c a l  l ist .  A hierarchical list is an ordered group of 
FIFO lists. The lists are ordered among themselves according to a certain criteria. 
We will call this criteria a priority level because it refers to the stage when a 
given list is going to be processed. In the case of our algorithm, the elements of 
the lists will be the points to be considered in the shrinking operation and the 
priority level of the list will be the distance value of the points in the list. At the 
initial step, all the points with the same distance transform value belong to the 
same list. 

During the extraction process, the element processed is the oldest one in 
the highest priority list, whereas during the storage process, the elements are 
inserted in the list corresponding to their priority level. When all the elements 
are extracted, this list becomes empty and the elements of the list with the 
immediate inferior priority are processed. 

It can happen that an element having a priority higher than the current one 
has to be inserted. In this case, the element is inserted in its corresponding list 
and this list becomes the current one since its priority level is the highest one 
n o w .  

T h e  a l g o r i t h m .  The entries of the algorithm are a distance transform image 
r and a distance threshold c, and the result is the centered topological hull 
H of the initial image object in which the holes of size equal or less than c 
are closed. The n-connectivity is used for the object and the ~-connectivity for 
the complementary. In addition to that,  we will use a binary image E which 
associates a boolean flag (TRUE or FALSE) to each point of the image to let us 
know if the corresponding point already belongs to the hierarchical list. We also 
use a function FIRST(L) to extract the first element of a list L. 

The algorithm is represented on figure 5. 
During the initialization step, we create a hierarchical list L filled with the 

points of the image border, i.e. the points of the image that have at least one 
neighbor in the bounding box B (see Section 5). Each point x is inserted in the 
FIFO list L[r with a priority level corresponding to its distance value r  
then the flag E[x] is set to indicate the insertion of the point x in the hierarchical 
list. 

The algorithm successively processes the lists in their decreasing priority 
order starting from N. The priority 0 corresponds to the object points which are 
excluded from the shrinking process. 

For the current priority list, we extract the first point x and the flag E[x] is 
reset. Then this point is suppressed from the topological hull H if its distance 
value is higher than c or if it is not a surface point, i.e. if its corresponding 
topological number T is equal to 1. When the point x is suppressed, the points 
of the 26-neighborhood of z which are not already in the list are inserted in 
the hierarchical list. As mentioned before, these points are inserted in the list 
corresponding to their distance value. If there is a point in a higher priority list, 



46 

IN: 

- A distance transform image : r 
- A threshold value : e 

OUT: 

- A centered topological hull H (regarding the distance transform criteria). 

Beginning of algorithm 
for each point x such that N*(x) N B # 0 / *  B is the bounding box */ 

L[r = L[~b(x)] O {x} /* insert x in the list with index r 
E[x] = TRUE 

end for 

i=N 
whilei>l do 

while L[i] # ~ do 
1. x = FIRST(L[i]) 
2. E ( x )  = FALSE 
3. if  (T(x) = 1) or (r > e) then  

a) g = H \ {x} /* remove x from H */ 
b) for each point yEN;6(x ) such that (E(y) = FALSE) and (r > 0) 

E(y) = TRUE 

L[r = L[r U {y} 
i f r  > i then  i =  r 

end  while 
i = i - 1  

end while 
E n d  of algorithm 

Fig. 5. The 3D-hole closing algorithm 

this list becomes the current one. 

The process ends when all the FIFO lists become empty and then the re- 
maining points are the ones of the object in addition with the ones which close 
the holes of size e and less. 

9 C o n c l u s i o n  

A 3D-hole closing algorithm has been presented. It  is based on some properties 
of the topological numbers and on the principle of the topological hull. It has the 
originality to close the 3D-holes of different sizes in order to preserve those which 
are not actually resulting from a noise effect. In addition to that,  our algorithm 
has the advantage to be linear in t ime complexity. 

The method that  we have proposed fits into the topological image processing 
domain. This domain has a large range of applications, such as the biomedical 
area (see [10, 11]). 
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