Skip to main content

Chemical isomerism, a challenge for algebraic combinatorics and for computer science

  • Invited Contributions
  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 948))

  • 174 Accesses

Abstract

Chemical isomerism means that there do occur different molecules with the same atomic constitutents. For example, about 70 molecules have been found which consist of exactly six carbon and six hydrogen atoms, or, in formal terms, which have the chemical formula C6H6. The existence of chemical isomerism was stated by the end of the eighteenth century, it was verified a quarter of a century later and explained another half of a century afterwards. It stimulated the development of graph theory and gave birth to algebraic combinatorics. It is only now that efficient computers and the helpful methods of computer science can be used in order to solve the basic problem related to chemical isomerism and the corresponding molecular structure elucidation. This problem is the construction of all the molecular graphs which correspond to a given chemical formula and (optional) further conditions on prescribed and forbidden substructures etc.

Here we therefore present MOLGEN, a software package which solves this problem in a redundancy free and efficient way. It is designed for research and education, and it finds applications in molecular structure elucidation, where a molecule has to be identified from experimental, usually from spectroscopic data. MOLGEN provides the full wealth of mathematically possible structures (multigraphs with given degree sequence, where the vertices are colored by atom names), from which further chemical tests allow to pick the correct solutions. From the mathematical point of view, MOLGEN is based on the constructive theory of discrete structures, and it clearly shows the success of the combination of algebraic and combinatorial methods for applications in sciences. Moreover, its efficiency is based on a careful use of data structures. MOLGEN is intensively used in chemical industry.

supported by Deutsche Forschungsgemeinschaft (grant Ke 11)

supported by Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.L. Allinger. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms. J. Amer. Chem. Soc., 99, S. 8127–8134, 1977.

    Google Scholar 

  2. N.L. Biggs, K.E. Lloyd, and R.J. Wilson. Graph theory 1736–1936. Clarendon Press, 1977.

    Google Scholar 

  3. A. Cayley. On the theory of the analytical forms called trees. Phil. Mag., 13, S. 172–176, 1857.

    Google Scholar 

  4. A. Cayley. On the analytical forms called trees, with application to the theory of chemical combinations. Rep. Brit. Assoc. Adv. Sci., 45, S. 257–305, 1875.

    Google Scholar 

  5. R. Grund. Symmetrieklassen von Abbildungen und die Konstruktion von diskreten Strukturen. Bayreuther Mathematische Schriften, 31, S. 19–54, 1990.

    Google Scholar 

  6. R. Grund. Konstruktion molekularer Graphen mit gegebenen Hybridisierungen und überlappungsfreien Fragmenten. Bayreuther Mathematische Schriften, 49, S. 1–113, 1994 (to appear).

    Google Scholar 

  7. R. Grund, A. Kerber, and L. Laue. Construction of discrete structures, especially isomers. to appear in Discr. Appl Math.

    Google Scholar 

  8. R. Grund, A. Kerber, and R. Laue. MOLGEN, ein Computeralgebra-System für die Konstruktion molekularer Graphen. MATCH, 27, S. 87–131, 1992.

    Google Scholar 

  9. R. Hager, A. Kerber, R. Laue, D. Moser, and W. Weber. Construction of orbit representatives. Bayreuther Mathematische Schriften, 35, S. 157–169, 1991.

    Google Scholar 

  10. A. von Humboldt Versuche über den gereizten Muskel-und Nervenfaser nebst Vermuthungen über den chemischen Prozess des Lebens. Decker und Compagnie, Leipzig, und Heinrich August Rottmann, Posen, 1797

    Google Scholar 

  11. A. Kerber. Algebraic Combinatorics Via Finite Group Actions. BI-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1991.

    Google Scholar 

  12. R. Laue. Construction of combinatorial objects — a tutorial. Bayreuther Mathematische Schriften, 43, S. 53–96, 1993.

    Google Scholar 

  13. E. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Computer and System Sciences, 25, S. 42–65, 1982.

    Google Scholar 

  14. J.G. Nourse, D.H. Smith, R.E. Carhart, and C. Djerassi. Exhaustive generation of stereoisomers for structure elucidation. J. Am. Chem. Soc., 101, S. 1216–1223, 1979.

    Google Scholar 

  15. G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta mathematica, 68, S. 145–253, 1937.

    Google Scholar 

  16. R.C. Read. Every one a winner. Ann. Discr. Math., 2, S. 107–120, 1978.

    Google Scholar 

  17. H.J. Redfield. The theory of group-reduced distributions. Am. J. Math., 49, S. 433–455, 1927.

    Google Scholar 

  18. D.H. Rouvray. The Origins of Chemical Graph Theory. In: D. Bonchev/D. h. Rouvray (eds.): Chemical Graph Theory, 1–39. Mathematical Chemistry Series, vol. 1, Abacus Press, 1991.

    Google Scholar 

  19. E. Ruch, W. Hässelbarth, B. Richter. Doppelnebenklassen als Klassenbegriff und Nomenklaturprinzip für Isomere und ihre Abzählung. Theoretica Chimica Acta, 19 (1970), 288–300.

    Google Scholar 

  20. E. Ruch, D. J. Klein. Double cosets in chemistry and physics. Theoretica Chimica Acta, 63 (1983), 447–472.

    Google Scholar 

  21. B. Schmalz. Verwendung von Untergruppenleitern zur Bestimmung von Doppelnebenklassen. Bayreuther Mathematische Schriften, 31, S. 109–143, 1990.

    Google Scholar 

  22. B. Schmalz. t-Designs zu vorgegebener Automorphismengruppe. Bayreuther Mathematische Schriften, 41, S. 1–164, 1992.

    Google Scholar 

  23. B. Schmalz. The t-designs with prescribed automorphism group, new simple 6-designs. J. Comb. Designs, 1, S. 125–146, 1993.

    Google Scholar 

  24. C.A. Shelley. Heuristic Approach for Displaying Chemical Structures. J. Chem. Inf. Comput. Sci., 23, S. 61–65, 1983.

    Google Scholar 

  25. C.C. Sims. Computation with Permutation Groups. In S.R. Petrick, Hrsg., Proc. of the Second Symposium on Symbolic and Algebraic Manipulation, S. 23–28. Assoc. Comput. Mach.

    Google Scholar 

  26. J.J. Sylvester. Chemistry and Algebra. Nature, 17, 1878.

    Google Scholar 

  27. Th. Wieland. Erzeugung, Abzählung und Konstruktion von Stereoisomeren. MATCH, 31, 1994 (submitted).

    Google Scholar 

  28. L. A. Zlatina. Mathematical Models of Generation of Stereoisomers and Building Space Models of Molecules. Dissertation, All-Union Research Institute of Organic Sythesis, Moskau, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Cohen Marc Giusti Teo Mora

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benecke, C., Grund, R., Hohberger, R., Kerber, A., Laue, R., Wieland, T. (1995). Chemical isomerism, a challenge for algebraic combinatorics and for computer science. In: Cohen, G., Giusti, M., Mora, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1995. Lecture Notes in Computer Science, vol 948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60114-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-60114-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60114-2

  • Online ISBN: 978-3-540-49440-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics