
Distributed Systems

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

875

Advisory Board: W. Brauer D. Gries J. Stoer

Implementing Secure Dependencies over a Network by

Designing a Distributed Security SubSystem

Bruno d'AUSBOURG

CERT - ONERA
D6partement d'Etudes et de Recherches en Informatique

2, Avenue E. Belin - B.P. 4025
31055 Toulouse - Cedex- FRANCE

email: ausbourg @tls-cs.cert.fr

It was recently argued that the presence of covert channels should no longer be
taken for granted in multilevel secure systems. Until today, multilevel security
seems to have been an ideal to approach and not a requirement to meet. The
question is: is it possible to design a practical multilevel system offering full
security? Based on which architecture? The approach described in this paper
reflects some results of a research project which suggests some ideas to answer
this question. We have chosen the distributed architecture of a secure LAN as an
application framework. In particular we show how controls exerted on
dependencies permit to control exhaustively the elementary flows of
information. The enforced rules govern both the observation and the handling of
data over the whole system. They are achieved by means of some hardware
mechanisms that submit the access of hosts to the medium to a secure medium
access control protocol. We evaluate how secure dependencies used to ensure
confidentiality in such an architecture may also be used to answer some other
needs with respect to other attributes of security.

1 Introduction

Many systems were designed in order to protect confidentiality of data and processes.
This can be done by building multilevel architectures of machines and networks. These
architectures tolerate the existence of covert channels, because standards consider that
covert channels are inevitable. Proctor and Neumann in [14] argued that the presence
of covert channels should no longer be taken for granted in multilevel secure systems.
Indeed, applications should not tolerate any compromise of multilevel security, not

even through covert channels of low bandwidths. They argued also that systems with
multilevel processors seem to be either impractical or insecure. They suggest to
redirect research and development efforts towards developing multilevel disk drives
and multilevel network interface units for use with only single level processors in
building multilevel distributed systems.

This position may be debated, but the asked question is interesting. Until today,
multilevel security seems to have been an ideal to approach and not a requirement to
meet. The question is: is it possible to design a practical multilevel system offering full
security? Based on which architecture?

250

The approach described in this paper reflects some results of a research project 1
which suggests some ideas to answer this question. This project aims at building a
system architecture (machine and LAN) that offers a high degree of protection both for
storage, processing and communication of user data. This protection is based on an
exhaustive control of information flows, including timing flows, and ensuring there is
no place for covert channels. We have chosen the distributed architecture of a secure
LAN as an application framework.

2 Related works

Randell and Rushby described a secure distributed system in [15]. This system was
designed to offer multilevel file system services over a network. The security was
founded on an interpretation of the Bell and La Padula model [3] and enforced by use
of cryptographic techniques to enforce separation between levels and to ensure
confidentiality or integrity of files and file servers. The security was located in trusted
network interface units (TNIUs), trusted terminal interface units (TTIUs) and a trusted
multilevel station running a security kernel. This approach relied on securing
application services over a network.

It was developped and extended through the DSS project ([17] and [18]) at
DRA Malvern: the architecture of the Distributed Secure System is close to our own
architecture. But the mechanisms chosen to enforce separation are not the same.

Other approaches tend to locate security controls inside various protocol layers
and to protect connections established between entities over a network. The Trusted
Network Architecture [10] is based on secure data channels over which only
authorized subjects can send, inspect or modify the data stream. This is achieved
through the use of mechanisms including encryption, checksums and nonces. Network
communication that bypasses these secure data channel is not possible.

More commercial approaches [6] tried to devise secure networks. The Verdix
secure LAN, for example, also founds the multilevel security it enforces on the Bell
and La Padula model. A network security centre manages and controls all the
operations and connections exerted by trusted network interface units. Protection and
separation between connections is logical, and is based on the use of cryptographic
techniques. The Boeing Secure LAN also consists of trusted interface units. The secure
network server attaches labels to datagrams and provides mandatory access control
decisions based on the value of the labels. The Sun MLS OS is an extension of SunOS
to provide mandatory access control. It requires source hosts to label packets and
destination hosts to check labels on received packets.

All these approaches were developed in order to protect confidentiality in
systems. They are founded on the use of labels and of cryptographic methods to
separate levels. But they do not prevent some illicit information flows. In particular,
they are not involved in managing the allocation of resources among levels. And
resource allocation or management is the reason for most of the coven channels in

1. This project was supported by DGA in France.

251

systems. In this case, cryptographic methods and labelling of packets are inefficient.
Of course, if network lines are vulnerable, encryption can help to preserve the
confidentiality and integrity of data transmitted by the network.

But if the system does not carefully manage the allocation of resources among
levels, user communicating at low levels could detect and perceive the activity at
higher levels. And encrypting messages does nothing to eliminate these covert
channels. Achieving an efficient control of information flows, able to separate system
domains in a quite secure manner, can eliminate them. Our goal is to devise such a
"secure system".

3 Causal Dependencies and Security

3.1 Causal dependencies

A system may be described as a set of points (o,0. A point references an object o at a
time or date t. This introduction of time is necessary because time can be observed in
the system, for example: durations of operations.

input

output

t o t 1 t 2 t$ t ,

o
@

o
o
o
o ~
o
o

L Q

i,b
! ~

o , ,

o

o

~ o

o

0

/ o
o
o

\ ~

L _
v t

01
02
03
04
05
06
07
08
09

Fig. 1 Causal dependencies inside a system

So, one can act on the value of the object o, at the instant t, or one can act on the
instant t at which the object o is given a particular value. In the first case, the object o
can be used to transmit some information if any semantics can be assigned to its value
and a storage channel is involved here; in the second case, time is used and therefore, a
timing channel is involved if any semantics can be assigned to the observed instant
values.

Some of these points are input points, others are output points, and the last ones
are internal points. These points evolve with time and this evolving is due to the
elementary transitions made by the system. An elementary transition can modify a
point: then, at instant t, it sets a new value v for the object o of the point. This instant t
and the new value v functionally depend on previous points.

This functional dependency on previous points is named causal dependency[1].
The causal dependency of (o,t) on (o',t') with t '< t is denoted by (o',t') --) (o,t).
Informally, by (o, t) "causally depends on" (o 't') we mean that the point (o't') is used to
generate the point (o,t). An interesting discussion of McLean in [11] illustrates the
need to take account of these dependencies when addressing information flows. The

252

assumption made here may seem too strong with respect to this discussion. But it is
useful because it permits to build sufficient conditions for security.

�9 t

c o n ~ e p (x)

Fig. 2 Cones of causality and of dependencies

The transitive closure of the relation "--->" (denoted "---~*") at (o,t) defines the
causality cone of (o,t), in short:

cone(o, t) = [(o ', t ') / (o ', t') --~ * (o, t)}.
Conversely, we denote the dependency cone the set dep(o,t) of points which

causally depend on (o,t):

dep(o, O= [(o "t') / (o, t) --->* (o ', t')];
A relation between the sets cone and dep is given by:

y E dep(x) r x ~ cone(y)
where x and y denote two points (o,t) and (o't') of the system.

These causal dependencies make up the structure of information flows inside
the system. I f a subject s has any knowledge about the internal functioning of the
system, then he is able to know the internal scheme of causal dependencies. So, by
observing any output point x o, he is able to infer any information in cone(xo). In
particular cone(xo) may include input points x i which contain some input data of the
system.

Conversely, by altering an input point x i, s can alter any point in dep(xi) and in
particular an output point x o ~ dep(xi).

In particular, if a subject s can observe a set 0 s of output points x o in the system,
we denote by Obs s the set of all points that s can observe in the system:

Obs s -- U cone (Xo)
X o • 0 s

Similarly, if a subject s can alter a set A s of input points x i in the system, we
denote by Alt s the set of all points that s can alter and

Al t s = U dep (xi)
xi~ A

s

3.2 Security

The aimed security must control both observation and alteration over the
system. In a first part, we address only the observation problem, and its related

253

property of confidentiality. Informally, the system must ensure that causal
dependencies enforce secure internal information flows.

O b s s contains the points that a subject s in the system is able to observe in the
system. The set R s contains the points that the subject s has the right to observe in
accordance with the security policy. So, we say in accordance with [5] that the system
is secure if a subject s can observe the only objects he has the right to observe:

O b s s c_ R s (1)

When the security policy which is used to define the rights of subjects is the
multilevel security policy, a classification level l (x) is assigned to points x and a
clearance level l(s) is assigned to subjects s and the set R (s) may be defined quite
naturally by:

R(s) = [x / l (x) < l(s)]

3.3 Security conditions

Two conditions are s u f f i c i e n t in order to guarantee the security defined by (1).

Firstly, an interface rule expresses conditions on the classification level of an output
point x o and on the clearance level of the subject s who can observe this point:

Vs , x o ~ 0 s ~ l(s) > l(xo) (2)

The second condition requires a monotonic increasing of levels over causal
dependencies. If values of levels increase with sensitivity of points:

V x , V) ; x ---) y ~ l(x) < l(y) (3)

Cone-Lemma. If condition (3) is enforced then

x ~ c o n e (y) ~ l(x) < l(y) (4)

Proof. We take the depth of the cone into account. We define conen(Y) the cone of y of
depth n: so, V x ~ conen(Y) there is a string of n points x = x n --4 Xn_ 1 ~ ... ~ x I ---) y. We
want to prove that V n x ~ conen(Y) ~ l(x) < l(y). This is done by induction on n. If n = l

then x---~y and by (3) we have l(x) < l(y).

For a depth of n+l, x = x n + 1 --~ x n ---) Xn_ 1 ~ ... ~ x I ~ y. And l(xn) < l (y) by induction
assumption. Then x ~ x n and by (3) l(x) < l(xn) < l(y). �9

Fact 1. If Conditions (2) and (3) are enforced in a system then the system is secure.

Proof. We must show that (2) + (3) ~ (1) .

If x ~ O b s s then x ~ 0 s or 3 y ~ 0 s / x ~ cone (y) . If x ~ 0 s, then by (2) , l (x) < l(s).. In
the other case 3 y ~ 0 s / x ~ cone(y) , and then l (x) < l(y) < l(s) by (2) and Cone-
Lemma. So x ~ R s. �9

With respect to confidentiality, the both rules (2) and (4) ensure that for any
subject s who has the right to observe an output point x o, the observation o f x o will give
to s only information he has the right to observe. So the definition of security given by

(1) is satisfied.

The rule (3) defines s e c u r e dependencies. It gives the semantics of an internal
control which can be exerted on each system transition when a relation of causal
dependency is involved. This control on levels is sufficient to guarantee the security of

254

the whole system. It enforces the exhaustive control of information flows. This control
of information flows (including its temporal aspects embedded in the definition of
points) is achieved by making sure each transition and each elementary transfer of
information from input points until system points which can be observed directly by a
user. An other equivalent formulation of this last condition may be expressed as

Vx, Vy, l(x) > l(y) ~ ~ [x-+ y l
When x= (o,t') and y=(o,t) and t' < t, this means that the level value of the

object o may be downgraded, but both points before and after downgrading must not
depend one on the other. In other words, this change on the value of the classification
level of the object o may be done, but the value of the object o must also be erased, for
example, in order (o,t) after downgrading does not causally depend on (o,t') before
downgrading.

4 Interpretat ion

4.1 Choice of the hardware layer as context of interpretation

These rules must be instantiated in the framework of a real system to be used as
a reference for building a secure system. This can be done by making an interpretation
of the model in the context of one among the various abstract layers of a real system.
The choice has been made to perform this interpretation in the most concrete system
layer: the hardware layer. This approach offers two main advantages.

Firstly, the hardware layer manages only elementary objects whose granularity
is the smallest in the system. So, by defining exhaustively all the observable objects
inside this layer and by defining security controls on elementary operations that can be
exerted on these objects, all the operations done on more abstract objects in the system
will be submitted to these controls. Indeed, these more abstracts objects are built from
elementary concrete objects and are accessed through combinations of elementary
operations on these concrete objects. For example, assume that memory cells and disk
blocks can be observed and that controls are enforced consequently on read and write
operations. Then we can state that the use of files, in upper layers of the system, are
constrained by these elementary controls: if write operations are prohibited on memory
cells and blocks implementing a file f, neither f nor data structures associated to f (as
file descriptor nodes) can be used by open or write operations on f to store any new
information.

Secondly, this layer has few types of objects and subjects. So, the expression of
controls is simplified and their enforcement may be done exhaustively. Let us detail
this fact.

4.2 Security conditions in network interface units

Network interface units U connecting stations to a comunication medium
constitute the system architecture. These units access the medium according to the
CSMA/CD Medium Access Control protocol, as defined by IEEE 802.3. We denote by
M the Medium managed by the Physical Layer. In particular, this layer offers two

255

elementary signals (Carrier Sense, Collision Detection) and B which contains the bit
value carried by M.

The active entities, which are the subjects inside this hardware layer, are only
the network interface units U. These units have one input delay value, that is chosen
externally as a uniformly distributed random value in a finite range. They can be
represented by two data cells: the bit value b it has to deposit on M or it has sampled
from M and d that contains a delay value to spend before transmitting.

~ I 1 "[send I ~ B receive [" d ~ f fday ,

delay d [---'] "] ~ ~ b

b - ? 2 I

Medium

Fig. 3 The system architecture

In the same way, the objects are the internal cells b and delay of U and the
communication medium M (including CS, CD and B). A level is assigned to all objects
and subjects. The cells b and delay in U are doted with the level l(U) and all objects in
M share the same level l(M). The elementary transitions include the elementary send
and receive operations made by U between its own cells and M.

The receive operation, as expressed in the CSMA/CD protocol, consists in
permanently listening to signals CS and to the bit value B carried by M. This operation
produces a new value for b and the following dependencies are involved:

{CS, B} ~ b
Condition-receive. In this case, the rule (3) applied to the receive operation produces:

I(M) <_ I(U)
The send operation is less simple. Firstly, the decision by U to deposit a bit

value upon M is taken by listening to M and watching at signals CS and CD. The
transmission of the b value may be delayed according to the delay value stored in d
when CD indicates that a collision occured. When transmitting the bit b, a new value is
assigned to the M components. So

[CS, CD} w [delay} ---> [d}
[b,d} ~ [CS, CD, B}

Condition-send. The rule (3) applied to these dependencies produces

I(M) <_ I(U) <__ l(M) ~ I(M) = l(U)

4.3 Management of level objects

Levels are themselves objects in the system. So they are also submitted to the
control of dependencies. A classification level is assigned to them: we have chosen to
give the value "Low" to the level of a level object.Then, the fact that an information is
secret is not itself a secret. That is not a doctrine, but only a work assumption that we
made in order to simplify.

256

Being submitted to the control of dependencies, the rule (3) must be applied to
levels and then, given a level li:

x---~ I i ~ l(x) <_ l(li) ~ l(x) = Low
In other words, the value of a level and the instant at which this level gets a

given value only depend on low level information. This condition is sometimes
difficult to enforce, for example, when the value of a level decreases from a high to a
low value. This change of the level value must have been planned and declared at low
level.

In our system architecture, the value of the level of M , and time at which this
level takes a given value must be generated from Low level points. Then, the value of
the level of the medium and the time spent to this level are stated at Low level.
Therefore, the use of M is time sliced between levels. And slices are declared or
computed at Low level. A High process never acts on the value of a level (by
maintainig it or by changing it).

Similarly, the level of U must be declared at low level. And the time spent by U
at this given level is also declared in advance at Low level. So at the beginning, U is at
Low level. If a user wants to use the host and U at a level High, this user (and not a
process running on the untrusted host) must firstly declare at Low level (not High) that
he requires to use the unit U at level High during time t, in order to achieve
communications at level High. This can be viewed as a constraint for the user. In fact,
it is no more inconvenient than doing a login procedure. Of course, it is sometimes
difficult to estimate exactly the amount of time that he will need. But experiments on
the architecture that was developped on these principles show that light
overestimations do not degrade performances tragically [16].

4.4 Security SubSystem: S 3

Because they are simple, the controls expressed in Condition-receive an
Condition-send can be enforced in U by a subset of hardware features which are driven
by a subset of software. These two subsets constitute the Security SubSystem or S 3 of
the system. This S 3, so called by ITSEC [8] in Europe, is in fact the TCB, as
formalized in the Orange Book [12] and later the Red Book [13], of the interface unit
U and acts as a reference monitor.

Fact 2. If Condition-receive and Condition-send are enforced in U by S 3 then the
system is secure.

Proof. The system is secure if condition (4) is always satisfied. The points that a user
(or a process) can observe in an interface U i are b i and d i. From 4.2 and 4.3 we can
state that

cone (bi, di) D_ [CS, CD, B] U delay i k.) l(Ui) k.) l(M) and

cone (CS, CD, B) ~_ I(M) u [{bj, dj, delayj] t3 I(L~)] V j , Uj sending

Then,

cone (bi, di) = {CS, CD, B] t.) delay i w {t(Ui), t (M) lu [{bj, dj, detayjl u I(Uj)I V j , Uj
sending

257

And

So,

l(CS) = l(CD) = l(B) = l(M);

l(delayi) = l(bi) = l(di) = l(Ui);

l(bj) = l(dj) = l(delayj) = I(Uj) = l(M) because Uj is sending

I(I(M)) = l(l(Ui) = I(I(Uj)) = Lo w

l(M) < l(Ui) f rom condition-receive and condit ion-send

x �9 cone(bi, di) ~ l(x) < l(Ui) �9

The S 3 functionning ensures that values of points observed in U i and time t at
which these points take these values depend only on information that are allowed to be
observed. Some modulations on values or durations of elementary send and receive
operations can be observed in Ui: these modulations may be created in order to
generate information flows, but these flows are inefficient and do not strike a blow at
the security, thanks to the controls done by local S 3.

5 I m p l e m e n t a t i o n o f a Distr ibuted S 3 over a L A N

5.1 Security conditions enforced in a local S 3

The local S 3 is in charge of enforcing the controls defined by the two send and
receive conditions and regulating the access of these interface units to the
communication medium according to these. This local S 3 keeps values of levels for the
interface unit and for M. It grants or denies to the interface unit the access right to M
according to those values of levels.

~] send

send
receive

.~ receive ii!~i!!!i__ ~

l(1) = l(M)
l(I) >_ l(M)

Fig. 4 Rules to access the medium in a network interface unit

In fact, it can intervene by hardware on elementary operations exerted in order
to deposit or sample information on M. So, for the interface unit, the ability to send or
receive at any instant t is given by its own level and the level of the medium. An
interface unit equipped with its local S 3 constitutes a Trusted Network Interface Unit
or TNIU.

5.2 Trusted paths to local S 3

There is a need for building a trusted path between users and local S 3 of the
network interface unit. The mechanism of a Secure Interface Device (SID) is used and
permits to implement the principle of reservation of resources in advance. It is shown
in Fig. 5. A quite simple dialogue between users and local S 3 permits:

�9 to declare the value of the current level of the connected host for the next
session and the required duration for this session; this fixes the level of the
interface unit and the time needed for exchanges at this level;

258

�9 to initialize then the local S 3 functioning in accordance with these
declarations.

Single level host SID

~ ~ ~ ' TraUtShted

Fig. 5 Trusted Path

This is insufficient. Indeed, the local S 3 must be able to require a level for the
medium in accordance with the reservations made by the user, and to know its current
level value. A real security subnetwork is needed.

5.3 Security Subnetwork

Exchanges between hosts running at various current levels may occur only if
the level of the medium can change. In fact, this value is time sliced in accordance with
rules defined in 4.3: this slicing is based on level reservations which are produced and
emitted at low level by user through the trusted path.

Then, two conditions must be satisfied. Firstly, the value assigned to the level of
the medium must be known by every local S 3. Secondly, the time slicing of this value
must be enforced in a synchronous way over the LAN.

Satisfying the first condition requires a communication subnetwork between all
the local S 3. In fact, in this case, this subnetwork uses the same medium of
communication as hosts. The local S 3 which are interconnected by this way constitute
the security subnetwork of the system. This security subnetwork is used to exchange
security data between local S 3.

Level2 CSS ~ Paths

~ ~ ~ ~ M e d i u m

Level 0 Level 0 Level I Level 1

Fig. 6 Security Subnetwork

A centralized security station (or CSS) manages the data of security for the
network. In particular, it manages levels which are assigned to interface units and to
the communication medium according to reservations made by hosts and users through
the SID and emitted to CSS by local S 3. It broadcasts also these data to all the local S 3
over the security subnetwork.

259

Satisfying the second condition requires the existence of a protocol in charge of
regulating the exchanges of security data. It is also in charge of ensuring that the time
slicing of the medium level is known by all the local S 3 in a synchronous manner. So,
the rules which are used to access the medium in order to exchange security data are
not the same as the rules used by hosts in order to exchange user data. These rules
constitute the Security Medium Access Control (SMA C) protocol.

6 SMAC protocol and multilevel LAN

6.1 The SMAC Protocol

It enforces time slicing for the level of the medium according to reservations
made to the CSS. It manages also the exchange of security data under the authority of
the CSS. These data include particularly reservation data emitted from local S 3 and
level settings for the medium which are emitted from the CSS. In few words, the
SMAC protocol is reservation based.

It manages two functioning modes for the interface unit: a user mode and a
security mode. In the security mode, only local S 3 can use the medium M to exchange
security data with CSS. In user mode, operations to send and receive user data can be
performed by the interface units according to values of their own level and of the level
of M. The CSS computes time slices for sessions of exchanges in user mode which
correspond to various values assigned to the level of M. These values are set in
accordance with reservations previously received. At the end of a slice, the interface
unit always returns to the security mode. In security mode, the CSS may ask to local S 3
if reservations are pending. If yes, local S 3 may answer by giving the content of their
pending reservations. The protocol for this dialogue is a synchronous one. The CSS
fixes a transmission slot for each local S 3 to answer and each local S 3 may answer
during its reserved slot. The CSS broadcasts then a new value for the level of the
medium and a new session in user mode is started. In user mode, a Medium Access
Control (MAC) protocol arbitrates the access to the medium between units which are
allowed to access it: this protocol is CSMA/CD is in our case.

The SMAC protocol is similar to protocols used in the real time world where
requirements on the amount of delay between the time a packet is ready and the time it
is received at destination are stringent. In these protocols, some sources must reserve
transmission slots before they can begin transmission [19].

6.2 Architecture of the interface unit

So, this protocol leads to a quite simple architecture for secure interface units.
Two components make up them.

The first component is a classical one which enforces a standard MAC protocol.
In our case, this protocol is CSMAJCD. This component achieves the send and receive
requests issued by upper communication layers in hosts. These two operations are
achieved by activating the Rec and Send I modules in accordance with the CSAM/CD
protocol.

260

The second component enforces the operations of the local S 3. Four functions
are needed: they are achieved by activation of four modules. The Rec module is similar
to the Rec module of the CSMA/CD component: it listens to the medium and recovers
frames from it. The Send 0 module enforces sending operation for the local S 3. But
these operations are done in a synchronous way by getting transmission slots
computed by the CSS. So this module is quite much simpler than the Send 1
asynchronous module of the CSMA/CD component. Then the Int interpretation
module achieves the interpretation of security commands emitted by the CSS
(set_level_medium, set_level_niu...) or by the user through the Trusted Path and its
SID (reserv_level). The last Inhib module drives the physical connection of the
CSMA/CD component to the medium. It inhibits Rec or Send 1 accesses to the medium
according to values of the medium level and of the interface level.

S 3local"] coCmSmM~niCcaDng

Medium

Fig. 7 SMAC interface unit

These are all elementary modules, whose functions are simple and not complex.
So the local S 3 is in fact a much lighter component than the CSMA/CD component. It
can be connected with an existing standard CSMA/CD component.

6.3 DS 3 and multilevel LAN

The CSS, the local S 3 and the medium which is accessed in accordance with the
rules of the SMAC protocol constitute the Distributed S 3 of the LAN (or DS3). The
DS 3 and the local S 3 cooperate in enforcing the control of information flows in the
more concrete layer of the system: the hardware layer. In particular, this control is
enforced by programming the local S 3. This programming is done in security mode by
exchanging security frames between the trusted CSS and local S 3. So, these exchanges
are isolated from the behaviouring of the untrusted interface components

A multilevel station, built above the same principles (more details in[4]) may
be added to ensure a secure sharing of data between levels. Because such a station is
able to manage multilevel data structures and processes, it permits to monolevel
stations to access data through levels in a quite secure manner.

The global architecture of such a system constitutes a secure LAN which is said
to have a multilevel functioning mode. Such an architecture satisfies the required
security property: all information flows, including timing flows, are controlled
exhaustively.

261

Low/High and CSS

Low Low High High

Fig. 8 Multilevel LAN architecture with two levels

It is obvious that this architecture is insufficient if the communication medium
is vulnerable: that is not the addressed problem in this paper. Cryptographic techniques
may be added to preserve the confidentiality and integrity of messages transmitted
over the network. These techniques may rely on cryptographic devices and functions
which can be driven by the Distributed S 3 (local S 3 and CSS). They can be viewed as
an external protection layer, by opposite to the internal protection layer described here.

7 Discussion

Such an architecture enforces the rules of multilevel security. The DS 3 aim at
controlling internal information flows which are involved when communications are
achieved over the medium by ensuring that the involved causal dependencies are
secure. This control of information flows may be used in order to enforce
confidentiality, integrity and availability properties.

7.1 With respect to confidentiality

Let Xlo w and Yhigh two points that belong to two different domains Dlo w and
Dhig h in the system. These domains may be defined, when multilevel security is the
applied security policy, by D l = [x / Ic(x) = l} with l(x) the confidentiality level of x and
Dhig h r Dlo w = O. The cone-lemma ensures that:

cone(Xlow) c Dlo w (5)

coneO'high) C Olo w kJ Dhig h (6)
These conditions ensure that the observation of any point in Dlo w will reveal no

information about points in Dhig h. But points of Ohig h may be built from points of Dlo w.
The only allowed flows of information are from low to high. It is a classical result in
confidentiality. In this case, all information flows are controlled.

By managing levels of interface units and of the medium, the SMAC protocol
permits the local S 3 to authorize or not any send or receive accesses of interface units

262

to the medium. The enforced rules authorize an interface unit to send data to the
medium when both levels of the interface and of the medium are the same. In this case,
the state of the medium at a given time depends on the previous state and operations of
interface units at the same level only. This fact implements the condition (5) and in
particular, at Low level, the state of the medium depend only on points at the same Low
level.

I ,Dlow

.... ~ t

xl~ [

Fig. 9 Graphical translation of confidentiality properties

Conversely, the enforced rules authorize an interface unit to receive data from
the medium when the level of the interface dominates (high) the level of the medium
(low). So a point Yhigh in the interface may depend on the state of the medium and it
was showed that this state of the medium only depends on points at the same level.
This state is a point Xlo w in Dlo w and Xlo w ~ cone(Yhigh). This fact is in accordance with
the condition (6).

The definition of points includes objects and timing components. The
conditions (5) and (6) with respect to timing components are ensured by the time
slicing enforced by the SMAC protocol on the level of the medium. Slices are
computed on a Low level information basis, from reservations. So, for example,
durations assigned to send or receive operations exerted by an interface unit depend
on: firstly, durations of time slices which are assigned to each level of the medium, and
secondly, on the state of the medium. We have showed that both depend on points
whose lewel is dominated by the level of the interface.

7.2 With respect to integrity

When integrity is the addressed property, the same approach can be used. The
set Alt s contains the points that a user, or more generally a subject s is able to alter and
the set R s contains the points the subject s has the right to alter in accordance with the
security policy. So, the definition of the security given in (1) is the same here: the
system is secure if a subject s can act only on the objects he has the right to act:

A s c R s (7)

The set R s is also given by

g s = [x / lifx) <_ li(s)]

where li(s) denotes the clearance of the user in integrity and li(x) is the integrity
level of point x. The interface rule expresses conditions on the integrity level of an
input point x i and the clearance level of the subject s who can alter this point:

V s , x i ~ A s ~ li(s) >- li(xi) (8)

263

The second condition requires monotonic decreasing of levels over causal
dependencies. If values of levels increase with integrity of points:

Vx, k/y, x ----) y ~ li(x) > li(y) (9)

Dep-Lemma. If condition (3) is enforced

x ~ dep(y) ~ li(Y) > li(x)

Proof. The proof is trivially similar to the proof of cone-lemma. �9

Fact 3. If in a system Conditions (2) and (3) are enforced then the system is secure.

Proof. We must show that (2) and (2) ~ (7) . If x ~ Al t s then x ~ A s or 3y ~ A s / x
dep(y). If x ~ A s, then by (2) , li(x) < li(s).. In the other case 3y ~ A s / x ~ dep(y), and
then li(x) < li(y) < li(s) by (2) and Dep-Lemma. So x is in R s. II

With respect to integrity, the both rules (2) and (3) ensure that any subject s
who has the right to alter an input point x i is allowed to alter any point of dep(xi). So
the alteration of x i by s will have an impact only on points that s has the right to alter.

A convention on levels can be chosen: a level I is a pair (loli) where l c denotes a
confidentiality level and l i is an integrity level and a comparison rule on levels may be:

(l I <- 12) r (lcl, lil) <- (lc2,li2) r (lcl <- Ic2) A (lil >-- li2)
With such a convention, the confidentiality conditions (3) can be extended with

condition (3) in a simple way by using a level l for integrity and confidentiality:

Vx, Vy, x --~ y ~ l(x) <__ l(y) (10)
Then the send and receive conditions can be expressed in the same way for both

confidentiality and integrity.

Let Xlo w and Yhigh two points that belong to two different domains of integrity
Dlo w and Dhig h in the system. These domains may be defined by D l = {x / li(x) = l] if
li(x) is the integrity level o fx and Dhig h t~ Dlo w = Q~. So Dlo w denotes a domain of low
integrity and Dhig h denotes a domain of high integrity. Referring to the rule (3) , then
dep(Xlow) and dep(Yhigh) are sets of points in the system and the rules ensure that

dep(xto w) ~_ Dlo w (I1)

dep(Yhigh) c Dlo w k_) Dhig h (12)

I, t

Yhigh ~ - ~ Drl,h

Xl~ Dlnw

Fig. 10 Graphical translation of integrity properties

The condition (11) express that the alteration of any point in Dlo w will alter no
information about points in Dhig h. So the only allowed flows of information are from
high to low (condition (12)) . This is in accordance with classical results as expressed
by Biba [2] for example.

264

This is achieved in the context of the multilevel LAN by enforcing the same
mechanisms of control as for confidentiality. Each communicating host and interface
unit belongs to an integrity domain, and every elementary transfer of information is
submitted to this control of information flows.

By defining integrity domains and by controlling flows between these domains
according to the previous rules, we ensure there is no way, at a low integrity domain, to
use any input covert channel in order to insert corrupted instructions or data in a high
integrity domain.

These results may be applied to isolate and minimize functions which are vital
to run a critical process inside. Criticality levels may be defined; they reflect the degree
of criticality of functions or data with respect to the system objective. So a High
critical domain is fully protected from eventually malicious operations exerted from a
Low critical domain. This scheme is interesting in a security point of view, but also for
cost considerations. Indeed, it permits to minimize the High critical domain by
including in it the only really critical functions and data. Techniques used during the
development of such a system and during its running in order to ensure dependability
properties may be reduced by limiting them to the only critical domain.

7.3 With respect to availability

A particular case of the integrity property which was previously described
offers some kind of availability. Indeed, the SMAC protocol which is used to share the
communication medium of the multilevel LAN tends to separate domains of integrity/
criticality and to regulate flows between these domains according to multilevel rules.

In particular, the time slicing exerted on the level of the medium coupled with
the ability assigned to the interface units of sending or receiving according to time

s l i ces make impossible for an interface at a Low integrity level to disrupt the use of the
communication medium by interfaces at a High level of integrity. When
communications occur at a given level, there is no way for interface units at an other
level to get any send access to the medium.

So the availability of services inside the domain of High integrity can not be
countered by malicious processes at a Low level of integrity or by a crash or a bad
functioning occurring on an host at a lower level of integrity.

So, some mechanisms may be employed to ensure high availability inside the
high integrity domain itself. But their use is limited inside this domain only, and the
availability property is not put in danger by lower integrity levels, thanks to the
separation enforced by the DS 3 and the SMAC protocol.

8 Conclusion

Techniques and mechanisms suggested here were firstly designed and
developed in order to protect the confidentiality of data, processes and
communications over a LAN. This protection is based on a control of dependencies
that enforces an exhaustive control of information flows. It relies upon a distributed
security subsystem composed of a particularly restricted subset of hardware

265

mechanisms: they are in charge of ensuring that accesses of interface units to the
medium are done in accordance with multilevel rules. This leads to share the medium
in a particular way which defines a secure medium access control (or SMAC) protocol.
This protocol may be viewed as an extension of an existing MAC protocol, as CSMA/
CD.

This logical separation, achieved by means of this protocol, may be also used in
order to separate integrity levels. In particular, the extremely strong control of
information flows which is enforced can isolate some domain where a high level of
integrity may be needed drastically. This domain is then protected from other domains
of low integrity that can not corrupt its behaviour: in particular they can not enforce
any communication channel to send malicious data or pieces of code. Such levels of
integrity can be used in critical applications to protect some vital functions. As a
particular case of the application of control of dependencies to integrity, some needs in
availability may be answered also. The separation between high integrity and low
integrity domains ensure that any (malicious or not) failure in a low integrity domain
will not disrupt the good functioning inside a high integrity domain.

This whole security protects efficiently all the information that needs to be
protected, and only this information. We feel that this approach is well adapted to the
real world, where in fact, few informations and functions necessitate to be protected.
So, such a system does not penalize the use and processing of most of the data which
belong to an unprotected domain. Rather, it makes lighter the amount of protected
processing by reserving it to the only data which necessitate it.

A real system is actually under development upon these principles. Some
mechanisms and functions of distributed operating systems are beeing built above this
basic architecture. They implement classical distributed operating services, but, taking
account of the underlying architecture and of its multilevel functioning, they
implement also new multilevel distributed operating services: sharing files between
hosts running at different levels, or accessing remote files, running processes on
remote hosts. Then the challenge is no longer building a secure distributed operating
system but to building some distributed operating services upon a secure architecture,
and taking advantage of its security features.

9 References

1.

.

.

."

E Bieber, E Cuppens, "A logical view of secure dependencies." In Journal of
Computer Security, Vol. 1, Nr. 1, IOS Press, 1992

K. J. Biba, "Integrity Considerations for Secure Computer Systems", Technical
Report ESD-TR-76-372, ESD/AFSC, Hanscom AFB, Bedford, Mass., 1977.
Also MITRE MTR-3153.

D. E. Bell and L. J. Padula "Secure Computer Systems: Unified Exposition and
Multics Interpretation", MTR-2997, MITRE Corporation, Bedford, Mass.
(1975).

B. d'Ausbourg and J.H. Llareus, "M2S: A machine for multilevel security", in
Proceedings of ESORICS92, Toulouse, France, 1992

.

.

.

.

.

10.

11.

12.

13.

14.

15.

16.

17.

1 8 .

19.

266

G.Eizenberg, "Mandatory policy: secure system model". In AFCET, editor,
European Workshop on Computer Security, Paris,1989.

G.King "A survey of commercially available secure LAN product", in Proc. Int.
IEEE Conf. on Computer Security Applications, Tucson, Arizona, December
1989

ISO 7498-2, Organization for Standardization, Information Processing Systems -
Open System Interconnection Reference Model - Security Architecture, 1988

Information Technology Security Evaluation Criteria, Harmonized Criteria of
France, Germany, the Netherlaands, and the United Kingdom, 1990

H.L Johnson et al. "Integrity and Assurance of service Protection in a large,
multipurpose, critical System", In Proceedings of the 15th National Computer
Security Conference, Baltimore, MD, October 1992

E.S. Lee, B. Thomson, Peter I.P. Boulton and M. Stumm "An architecture for a
Trusted Network" European Symposium on Research in Computer Security,
ESORICS90, Toulouse, France, 1990

J. McLean, "Security Models and Information Flow" ,IEEE Symposium on
Security and Privacy, Oakland, 1990.

NCSC. Department of Defense. Trusted Computer Systems Evaluation Criteria.
Technical report DoD 5200.28-STD, National Computer Security Center, Fort
Meade, MD, December 1985

National Computer Security Center Trusted Network Interpretation of the
Trusted Computer System Evaluation Criteria, NCSC-TG-005, July 1987

N. E. Proctor and E G. Neumann "Architectural implications of covert
channels", In Proceedings of the 15th National Computer Security Conference,
Baltimore, MD, October 1992

J.M. Rushby and B. Randell, "A Distributed Secure System" Computer vol 16 no
7, IEEE, July 1983

P.Siron and B.d'Ausbourg "A Secure Medium Access Control Protocol: Security
versus Performances" in Proceedings of ESORICS 94, Brighton, UK, November
1994.

J. Wood and D.H. Barnes "A Practical Distributed System" in Proceedings of the
International Conference on System Security, London, October 1985

J. Wood "A practical Distributed System" in Proceedings of the Second
International Conference on Secure Communication Systems, lEE, London,
October 1986

R. Yavatkar, E Pai and R. Finkel "A reservation based CSMA Protocol for
Integrated Manufacturing networks", Tecn. Rep. 216-92, Department of Comp.
Sc., Univeristy of Kentucky, Lexington, KY

