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It was recently argued that the presence of covert channels should no longer be 
taken for granted in multilevel secure systems. Until today, multilevel security 
seems to have been an ideal to approach and not a requirement to meet. The 
question is: is it possible to design a practical multilevel system offering full 
security? Based on which architecture? The approach described in this paper 
reflects some results of a research project which suggests some ideas to answer 
this question. We have chosen the distributed architecture of a secure LAN as an 
application framework. In particular we show how controls exerted on 
dependencies permit to control exhaustively the elementary flows of 
information. The enforced rules govern both the observation and the handling of 
data over the whole system. They are achieved by means of some hardware 
mechanisms that submit the access of hosts to the medium to a secure medium 
access control protocol. We evaluate how secure dependencies used to ensure 
confidentiality in such an architecture may also be used to answer some other 
needs with respect to other attributes of security. 

1 Introduction 

Many systems were designed in order to protect confidentiality of data and processes. 
This can be done by building multilevel architectures of machines and networks. These 
architectures tolerate the existence of covert channels, because standards consider that 
covert channels are inevitable. Proctor and Neumann in [14] argued that the presence 
of covert channels should no longer be taken for granted in multilevel secure systems. 
Indeed, applications should not tolerate any compromise of multilevel security, not 

even through covert channels of low bandwidths. They argued also that systems with 
multilevel processors seem to be either impractical or insecure. They suggest to 
redirect research and development efforts towards developing multilevel disk drives 
and multilevel network interface units for use with only single level processors in 
building multilevel distributed systems. 

This position may be debated, but the asked question is interesting. Until  today, 
multilevel security seems to have been an ideal to approach and not a requirement to 
meet. The question is: is it possible to design a practical multilevel system offering full 
security? Based on which architecture? 
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The approach described in this paper reflects some results of a research project 1 
which suggests some ideas to answer this question. This project aims at building a 
system architecture (machine and LAN) that offers a high degree of protection both for 
storage, processing and communication of user data. This protection is based on an 
exhaustive control of information flows, including timing flows, and ensuring there is 
no place for covert channels. We have chosen the distributed architecture of a secure 
LAN as an application framework. 

2 Related works 

Randell and Rushby described a secure distributed system in [15]. This system was 
designed to offer multilevel file system services over a network. The security was 
founded on an interpretation of the Bell and La Padula model [3] and enforced by use 
of cryptographic techniques to enforce separation between levels and to ensure 
confidentiality or integrity of files and file servers. The security was located in trusted 
network interface units (TNIUs), trusted terminal interface units (TTIUs) and a trusted 
multilevel station running a security kernel. This approach relied on securing 
application services over a network. 

It was developped and extended through the DSS project ([17] and [18]) at 
DRA Malvern: the architecture of  the Distributed Secure System is close to our own 
architecture. But the mechanisms chosen to enforce separation are not the same. 

Other approaches tend to locate security controls inside various protocol layers 
and to protect connections established between entities over a network. The Trusted 
Network Architecture [10] is based on secure data channels over which only 
authorized subjects can send, inspect or modify the data stream. This is achieved 
through the use of mechanisms including encryption, checksums and nonces. Network 
communication that bypasses these secure data channel is not possible. 

More commercial approaches [6] tried to devise secure networks. The Verdix 
secure LAN, for example, also founds the multilevel security it enforces on the Bell 
and La Padula model. A network security centre manages and controls all the 
operations and connections exerted by trusted network interface units. Protection and 
separation between connections is logical, and is based on the use of cryptographic 
techniques. The Boeing Secure LAN also consists of trusted interface units. The secure 
network server attaches labels to datagrams and provides mandatory access control 
decisions based on the value of the labels. The Sun MLS OS is an extension of SunOS 
to provide mandatory access control. It requires source hosts to label packets and 
destination hosts to check labels on received packets. 

All these approaches were developed in order to protect confidentiality in 
systems. They are founded on the use of labels and of cryptographic methods to 
separate levels. But they do not prevent some illicit information flows. In particular, 
they are not involved in managing the allocation of resources among levels. And 
resource allocation or management is the reason for most of the coven channels in 

1. This project was supported by DGA in France. 
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systems. In this case, cryptographic methods and labelling of  packets are inefficient. 
Of course, if network lines are vulnerable, encryption can help to preserve the 
confidentiality and integrity of  data transmitted by the network. 

But if the system does not carefully manage the allocation of  resources among 
levels, user communicating at low levels could detect and perceive the activity at 
higher levels. And encrypting messages does nothing to eliminate these covert 
channels. Achieving an efficient control of  information flows, able to separate system 
domains in a quite secure manner, can eliminate them. Our goal is to devise such a 
"secure system". 

3 Causal Dependencies and Security 

3.1 Causal dependencies 

A system may be described as a set of  points (o,0. A point references an object o at a 
time or date t. This introduction of  time is necessary because time can be observed in 
the system, for example: durations of  operations. 
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Fig. 1 Causal dependencies inside a system 

So, one can act on the value of  the object o, at the instant t, or one can act on the 
instant t at which the object o is given a particular value. In the first case, the object o 
can be used to transmit some information if any semantics can be assigned to its value 
and a storage channel is involved here; in the second case, time is used and therefore, a 
timing channel is involved if any semantics can be assigned to the observed instant 
values. 

Some of  these points are input points, others are output points, and the last ones 
are internal points. These points evolve with time and this evolving is due to the 
elementary transitions made by the system. An elementary transition can modify a 
point: then, at instant t, it sets a new value v for the object o of  the point. This instant t 
and the new value v functionally depend on previous points. 

This functional dependency on previous points is named causal dependency[ 1 ]. 
The causal dependency of  (o,t) on (o',t') with t '<  t is denoted by (o',t') --) (o,t). 
Informally, by (o, t) "causally depends on" (o 't') we mean that the point (o't') is used to 
generate the point (o,t). An interesting discussion of  McLean in [11] illustrates the 
need to take account of  these dependencies when addressing information flows. The 
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assumption made here may seem too strong with respect to this discussion. But it is 
useful because it permits to build sufficient conditions for security. 

�9 t 

c o n ~ e p ( x )  

Fig. 2 Cones of causality and of dependencies 

The transitive closure of the relation "--->" (denoted "---~*") at (o,t) defines the 
causality cone of (o,t), in short: 

cone(o, t) = [(o ', t ') / (o ', t') --~ * (o, t)}. 
Conversely, we denote the dependency cone the set dep(o,t) of points which 

causally depend on (o,t): 

dep(o, O= [(o "t') / (o, t) --->* (o ', t')]; 
A relation between the sets cone and dep is given by: 

y E dep(x) r x ~ cone(y) 
where x and y denote two points (o,t) and (o't') of the system. 

These causal dependencies make up the structure of information flows inside 
the system. I f  a subject s has any knowledge about the internal functioning of the 
system, then he is able to know the internal scheme of causal dependencies. So, by 
observing any output point x o, he is able to infer any information in cone(xo). In 
particular cone(xo) may include input points x i which contain some input data of the 
system. 

Conversely, by altering an input point x i, s can alter any point in dep(xi) and in 
particular an output point x o ~ dep(xi). 

In particular, if a subject s can observe a set 0 s of output points x o in the system, 
we denote by Obs s the set of all points that s can observe in the system: 

Obs s -- U cone (Xo) 
X o • 0 s 

Similarly, if a subject s can alter a set A s of input points x i in the system, we 
denote by Alt s the set of all points that s can alter and 

Al t  s = U dep (xi)  
xi~ A 

s 

3.2 Security 

The aimed security must control both observation and alteration over the 
system. In a first part, we address only the observation problem, and its related 
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property of confidentiality. Informally, the system must ensure that causal 
dependencies enforce secure internal information flows. 

O b s  s contains the points that a subject s in the system is able to observe in the 
system. The set R s contains the points that the subject s has the right to observe in 
accordance with the security policy. So, we say in accordance with [5] that the system 
is secure if a subject s can observe the only objects he has the right to observe: 

O b s  s c_ R s (1)  

When the security policy which is used to define the rights of subjects is the 
multilevel security policy, a classification level l (x)  is assigned to points x and a 
clearance level l(s) is assigned to subjects s and the set R ( s )  may be defined quite 
naturally by: 

R(s )  = [ x / l ( x )  < l(s)]  

3.3 Security conditions 

Two conditions are s u f f i c i e n t  in order to guarantee the security defined by (1).  

Firstly, an interface rule expresses conditions on the classification level of an output 
point x o and on the clearance level of the subject s who can observe this point: 

Vs ,  x o ~ 0 s ~ l(s) > l(xo) (2)  

The second condition requires a monotonic increasing of levels over causal 
dependencies. If values of levels increase with sensitivity of points: 

V x ,  V) ;  x ---) y ~ l(x) < l(y)  (3)  

Cone-Lemma. If condition (3) is enforced then 

x ~ c o n e ( y )  ~ l(x) < l(y) (4)  

Proof. We take the depth of the cone into account. We define conen(Y  ) the cone of y of 
depth n: so, V x  ~ conen(Y ) there is a string of n points x = x  n --4 Xn_ 1 ~ ... ~ x I ---) y. We 
want to prove that V n  x ~ conen(Y)  ~ l(x) < l(y). This is done by induction on n. If n = l  

then x---~y and by (3) we have l(x) < l(y).  

For a depth of n+l,  x = x n +  1 --~ x n ---) Xn_ 1 ~ ... ~ x I ~ y. And l(xn) < l (y)  by induction 
assumption. Then x ~ x n and by (3) l(x) < l(xn) < l(y).  �9 

Fact 1. If Conditions (2)  and (3)  are enforced in a system then the system is secure. 

Proof. We must show that (2)  + (3) ~ ( 1 ) .  

If  x ~ O b s  s then x ~ 0 s or 3 y  ~ 0 s / x ~ cone (y ) .  If x ~ 0 s, then by (2)  , l (x)  < l(s).. In 
the other case 3 y  ~ 0 s / x ~ cone(y ) ,  and then l (x)  < l(y)  < l(s) by (2)  and Cone- 
Lemma. So x ~ R s. �9 

With respect to confidentiality, the both rules (2)  and (4)  ensure that for any 
subject s who has the right to observe an output point x o, the observation o f x  o will give 
to s only information he has the right to observe. So the definition of security given by 

(1)  is satisfied. 

The rule (3)  defines s e c u r e  dependencies. It gives the semantics of an internal 
control which can be exerted on each system transition when a relation of causal 
dependency is involved. This control on levels is sufficient to guarantee the security of 



254 

the whole system. It enforces the exhaustive control of information flows. This control 
of information flows (including its temporal aspects embedded in the definition of 
points) is achieved by making sure each transition and each elementary transfer of 
information from input points until system points which can be observed directly by a 
user. An other equivalent formulation of this last condition may be expressed as 

Vx, Vy, l(x) > l(y) ~ ~ [x-+ y l  
When x= (o,t') and y=(o,t) and t' < t, this means that the level value of the 

object o may be downgraded, but both points before and after downgrading must not 
depend one on the other. In other words, this change on the value of the classification 
level of the object o may be done, but the value of the object o must also be erased, for 
example, in order (o,t) after downgrading does not causally depend on (o,t') before 
downgrading. 

4 Interpretat ion  

4.1 Choice of the hardware layer as context of interpretation 

These rules must be instantiated in the framework of a real system to be used as 
a reference for building a secure system. This can be done by making an interpretation 
of the model in the context of one among the various abstract layers of a real system. 
The choice has been made to perform this interpretation in the most concrete system 
layer: the hardware layer. This approach offers two main advantages. 

Firstly, the hardware layer manages only elementary objects whose granularity 
is the smallest in the system. So, by defining exhaustively all the observable objects 
inside this layer and by defining security controls on elementary operations that can be 
exerted on these objects, all the operations done on more abstract objects in the system 
will be submitted to these controls. Indeed, these more abstracts objects are built from 
elementary concrete objects and are accessed through combinations of elementary 
operations on these concrete objects. For example, assume that memory cells and disk 
blocks can be observed and that controls are enforced consequently on read and write 
operations. Then we can state that the use of files, in upper layers of the system, are 
constrained by these elementary controls: if write operations are prohibited on memory 
cells and blocks implementing a file f, neither f nor data structures associated to f (as 
file descriptor nodes) can be used by open or write operations on f to store any new 
information. 

Secondly, this layer has few types of objects and subjects. So, the expression of 
controls is simplified and their enforcement may be done exhaustively. Let us detail 
this fact. 

4.2 Security conditions in network interface units 

Network interface units U connecting stations to a comunication medium 
constitute the system architecture. These units access the medium according to the 
CSMA/CD Medium Access Control protocol, as defined by IEEE 802.3. We denote by 
M the Medium managed by the Physical Layer. In particular, this layer offers two 
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elementary signals (Carrier Sense, Collision Detection) and B which contains the bit 
value carried by M. 

The active entities, which are the subjects inside this hardware layer, are only 
the network interface units U. These units have one input delay value,  that is chosen 
externally as a uniformly distributed random value in a finite range. They can be 
represented by two data cells: the bit value b it has to deposit on M or it has sampled 
from M and d that contains a delay value to spend before transmitting. 

~ I  1 "[ send I ~ B  receive [" d ~ f fday ,  

delay d [---'] "] ~ ~ b 

b - ? 2  I 

Medium 

Fig. 3 The system architecture 

In the same way, the objects are the internal cells b and delay of U and the 
communication medium M (including CS, CD and B). A level is assigned to all objects 
and subjects. The cells b and delay in U are doted with the level l(U) and all objects in 
M share the same level l(M). The elementary transitions include the elementary send 
and receive operations made by U between its own cells and M. 

The receive operation, as expressed in the CSMA/CD protocol, consists in 
permanently listening to signals CS and to the bit value B carried by M. This operation 
produces a new value for b and the following dependencies are involved: 

{CS, B} ~ b 
Condition-receive. In this case, the rule (3) applied to the receive operation produces: 

I(M) <_ I(U) 
The send operation is less simple. Firstly, the decision by U to deposit a bit 

value upon M is taken by listening to M and watching at signals CS and CD. The 
transmission of the b value may be delayed according to the delay value stored in d 
when CD indicates that a collision occured. When transmitting the bit b, a new value is 
assigned to the M components. So 

[CS, CD} w [delay} ---> [d} 
[b,d} ~ [CS, CD, B} 

Condition-send. The rule (3) applied to these dependencies produces 

I(M) <_ I(U) <__ l(M) ~ I(M) = l(U) 

4.3 Management  of level objects 

Levels are themselves objects in the system. So they are also submitted to the 
control of dependencies. A classification level is assigned to them: we have chosen to 
give the value "Low" to the level of a level object.Then, the fact that an information is 
secret is not itself a secret. That is not a doctrine, but only a work assumption that we 
made in order to simplify. 
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Being submitted to the control of dependencies, the rule (3) must be applied to 
levels and then, given a level li: 

x---~ I i ~ l(x) <_ l(li) ~ l(x) = Low 
In other words, the value of a level and the instant at which this level gets a 

given value only depend on low level information. This condition is sometimes 
difficult to enforce, for example, when the value of a level decreases from a high to a 
low value. This change of the level value must have been planned and declared at low 
level. 

In our system architecture, the value of the level of M ,  and time at which this 
level takes a given value must be generated from Low level points. Then, the value of 
the level of the medium and the time spent to this level are stated at Low level. 
Therefore, the use of M is time sliced between levels. And slices are declared or 
computed at Low level. A High process never acts on the value of a level (by 
maintainig it or by changing it). 

Similarly, the level of U must be declared at low level. And the time spent by U 
at this given level is also declared in advance at Low level. So at the beginning, U is at 
Low level. If a user wants to use the host and U at a level High, this user (and not a 
process running on the untrusted host) must firstly declare at Low level (not High) that 
he requires to use the unit U at level High during time t, in order to achieve 
communications at level High. This can be viewed as a constraint for the user. In fact, 
it is no more inconvenient than doing a login procedure. Of course, it is sometimes 
difficult to estimate exactly the amount of time that he will need. But experiments on 
the architecture that was developped on these principles show that light 
overestimations do not degrade performances tragically [16]. 

4.4 Security SubSystem: S 3 

Because they are simple, the controls expressed in Condition-receive an 
Condition-send can be enforced in U by a subset of hardware features which are driven 
by a subset of software. These two subsets constitute the Security SubSystem or S 3 of 
the system. This S 3, so called by ITSEC [8] in Europe, is in fact the TCB, as 
formalized in the Orange Book [12] and later the Red Book [13], of the interface unit 
U and acts as a reference monitor. 

Fact 2. If  Condition-receive and Condition-send are enforced in U by S 3 then the 
system is secure. 

Proof. The system is secure if condition (4) is always satisfied. The points that a user 
(or a process) can observe in an interface U i are b i and d i. From 4.2 and 4.3 we can 
state that 

cone (bi, di) D_ [CS, CD, B] U delay i k.) l(Ui) k.) l(M) and 

cone (CS, CD, B) ~_ I(M) u [{bj, dj, delayj] t3 I(L~)] V j ,  Uj sending 

Then, 

cone (bi, di) = {CS, CD, B] t.) delay i w {t(Ui), t (M) lu  [{bj, dj, detayjl u I(Uj)I V j ,  Uj 
sending 
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And 

So, 

l(CS) = l(CD) = l(B) = l(M); 

l(delayi) = l(bi) = l(di) = l(Ui); 

l(bj) = l(dj) = l(delayj) = I(Uj) = l(M) because Uj is sending 

I(I(M)) = l(l(Ui) = I(I(Uj)) = Lo w  

l(M) < l(Ui) f rom condition-receive and  condit ion-send 

x �9 cone(bi, di) ~ l(x) < l(Ui) �9 

The S 3 functionning ensures that values of points observed in U i and time t at 
which these points take these values depend only on information that are allowed to be 
observed. Some modulations on values or durations of elementary send and receive 
operations can be observed in Ui: these modulations may be created in order to 
generate information flows, but these flows are inefficient and do not strike a blow at 
the security, thanks to the controls done by local S 3. 

5 I m p l e m e n t a t i o n  o f  a Distr ibuted S 3 over  a L A N  

5.1 Security conditions enforced in a local S 3 

The local S 3 is in charge of enforcing the controls defined by the two send and 
receive conditions and regulating the access of these interface units to the 
communication medium according to these. This local S 3 keeps values of levels for the 
interface unit and for M. It grants or denies to the interface unit the access right to M 
according to those values of levels. 

~ ]  send 

send 
receive 

.~ receive ii!~i!!!i__ ~ 

l(1) = l(M) 
l(I) >_ l(M) 

Fig. 4 Rules to access the medium in a network interface unit 

In fact, it can intervene by hardware on elementary operations exerted in order 
to deposit or sample information on M. So, for the interface unit, the ability to send or 
receive at any instant t is given by its own level and the level of the medium. An 
interface unit equipped with its local S 3 constitutes a Trusted Network Interface Unit 
or TNIU. 

5.2 Trusted paths to local S 3 

There is a need for building a trusted path between users and local S 3 of the 
network interface unit. The mechanism of a Secure Interface Device (SID) is used and 
permits to implement the principle of reservation of resources in advance. It is shown 
in Fig. 5.  A quite simple dialogue between users and local S 3 permits: 

�9 to declare the value of the current level of the connected host for the next 
session and the required duration for this session; this fixes the level of the 
interface unit and the time needed for exchanges at this level; 
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�9 to initialize then the local S 3 functioning in accordance with these 
declarations. 

Single level host SID 

~ ~ ~ '  TraUtShted 

Fig. 5 Trusted Path 

This is insufficient. Indeed, the local S 3 must be able to require a level for the 
medium in accordance with the reservations made by the user, and to know its current 
level value. A real security subnetwork is needed. 

5.3 Security Subnetwork 

Exchanges between hosts running at various current levels may occur only if 
the level of the medium can change. In fact, this value is time sliced in accordance with 
rules defined in 4.3: this slicing is based on level reservations which are produced and 
emitted at low level by user through the trusted path. 

Then, two conditions must be satisfied. Firstly, the value assigned to the level of 
the medium must be known by every local S 3. Secondly, the time slicing of this value 
must be enforced in a synchronous way over the LAN. 

Satisfying the first condition requires a communication subnetwork between all 
the local S 3. In fact, in this case, this subnetwork uses the same medium of 
communication as hosts. The local S 3 which are interconnected by this way constitute 
the security subnetwork of the system. This security subnetwork is used to exchange 
security data between local S 3. 

Level2 CSS ~ Paths 

~ ~ ~ ~ M e d i u m  

Level 0 Level 0 Level I Level 1 

Fig. 6 Security Subnetwork 

A centralized security station (or CSS) manages the data of security for the 
network. In particular, it manages levels which are assigned to interface units and to 
the communication medium according to reservations made by hosts and users through 
the SID and emitted to CSS by local S 3. It broadcasts also these data to all the local S 3 
over the security subnetwork. 
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Satisfying the second condition requires the existence of a protocol in charge of 
regulating the exchanges of security data. It is also in charge of ensuring that the time 
slicing of the medium level is known by all the local S 3 in a synchronous manner. So, 
the rules which are used to access the medium in order to exchange security data are 
not the same as the rules used by hosts in order to exchange user data. These rules 
constitute the Security Medium Access Control (SMA C) protocol. 

6 SMAC protocol and multilevel LAN 

6.1 The SMAC Protocol 

It enforces time slicing for the level of the medium according to reservations 
made to the CSS. It manages also the exchange of security data under the authority of 
the CSS. These data include particularly reservation data emitted from local S 3 and 
level settings for the medium which are emitted from the CSS. In few words, the 
SMAC protocol is reservation based. 

It manages two functioning modes for the interface unit: a user mode and a 
security mode. In the security mode, only local S 3 can use the medium M to exchange 
security data with CSS. In user mode, operations to send and receive user data can be 
performed by the interface units according to values of their own level and of the level 
of M. The CSS computes time slices for sessions of exchanges in user mode which 
correspond to various values assigned to the level of M. These values are set in 
accordance with reservations previously received. At the end of a slice, the interface 
unit always returns to the security mode. In security mode, the CSS may ask to local S 3 
if reservations are pending. If yes, local S 3 may answer by giving the content of their 
pending reservations. The protocol for this dialogue is a synchronous one. The CSS 
fixes a transmission slot for each local S 3 to answer and each local S 3 may answer 
during its reserved slot. The CSS broadcasts then a new value for the level of the 
medium and a new session in user mode is started. In user mode, a Medium Access 
Control (MAC) protocol arbitrates the access to the medium between units which are 
allowed to access it: this protocol is CSMA/CD is in our case. 

The SMAC protocol is similar to protocols used in the real time world where 
requirements on the amount of delay between the time a packet is ready and the time it 
is received at destination are stringent. In these protocols, some sources must reserve 
transmission slots before they can begin transmission [19]. 

6.2 Architecture of the interface unit 

So, this protocol leads to a quite simple architecture for secure interface units. 
Two components make up them. 

The first component is a classical one which enforces a standard MAC protocol. 
In our case, this protocol is CSMAJCD. This component achieves the send and receive 
requests issued by upper communication layers in hosts. These two operations are 
achieved by activating the Rec and Send I modules in accordance with the CSAM/CD 
protocol. 



260 

The second component enforces the operations of the local S 3. Four functions 
are needed: they are achieved by activation of four modules. The Rec module is similar 
to the Rec module of the CSMA/CD component: it listens to the medium and recovers 
frames from it. The Send 0 module enforces sending operation for the local S 3. But 
these operations are done in a synchronous way by getting transmission slots 
computed by the CSS. So this module is quite much simpler than the Send 1 
asynchronous module of the CSMA/CD component. Then the Int interpretation 
module achieves the interpretation of security commands emitted by the CSS 
(set_level_medium, set_level_niu...) or by the user through the Trusted Path and its 
SID (reserv_level). The last Inhib module drives the physical connection of the 
CSMA/CD component to the medium. It inhibits Rec or Send 1 accesses to the medium 
according to values of the medium level and of the interface level. 

S 3local" ] coCmSmM~niCcaDng 

Medium 

Fig. 7 SMAC interface unit 

These are all elementary modules, whose functions are simple and not complex. 
So the local S 3 is in fact a much lighter component than the CSMA/CD component. It 
can be connected with an existing standard CSMA/CD component. 

6.3 DS 3 and multilevel LAN 

The CSS, the local S 3 and the medium which is accessed in accordance with the 
rules of the SMAC protocol constitute the Distributed S 3 of the LAN (or DS3). The 
DS 3 and the local S 3 cooperate in enforcing the control of information flows in the 
more concrete layer of the system: the hardware layer. In particular, this control is 
enforced by programming the local S 3. This programming is done in security mode by 
exchanging security frames between the trusted CSS and local S 3. So, these exchanges 
are isolated from the behaviouring of the untrusted interface components 

A multilevel station, built above the same principles (more details in[4]) may 
be added to ensure a secure sharing of data between levels. Because such a station is 
able to manage multilevel data structures and processes, it permits to monolevel 
stations to access data through levels in a quite secure manner. 

The global architecture of such a system constitutes a secure LAN which is said 
to have a multilevel functioning mode. Such an architecture satisfies the required 
security property: all information flows, including timing flows, are controlled 
exhaustively. 
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Low/High and CSS 

Low Low High High 

Fig. 8 Multilevel LAN architecture with two levels 

It is obvious that this architecture is insufficient if the communication medium 
is vulnerable: that is not the addressed problem in this paper. Cryptographic techniques 
may be added to preserve the confidentiality and integrity of messages transmitted 
over the network. These techniques may rely on cryptographic devices and functions 
which can be driven by the Distributed S 3 (local S 3 and CSS). They can be viewed as 
an external protection layer, by opposite to the internal protection layer described here. 

7 Discussion 

Such an architecture enforces the rules of multilevel security. The DS 3 aim at 
controlling internal information flows which are involved when communications are 
achieved over the medium by ensuring that the involved causal dependencies are 
secure. This control of information flows may be used in order to enforce 
confidentiality, integrity and availability properties. 

7.1 With respect to confidentiality 

Let Xlo w and Yhigh two points that belong to two different domains Dlo w and 
Dhig h in the system. These domains may be defined, when multilevel security is the 
applied security policy, by D l = [x / Ic(x ) = l} with l(x) the confidentiality level of x and 
Dhig h r Dlo w = O. The cone-lemma ensures that: 

cone(Xlow) c Dlo w (5) 

coneO'high) C Olo w kJ Dhig h (6) 
These conditions ensure that the observation of any point in Dlo w will reveal no 

information about points in Dhig h. But points of Ohig h may be built from points of Dlo w. 
The only allowed flows of information are from low to high. It is a classical result in 
confidentiality. In this case, all information flows are controlled. 

By managing levels of interface units and of the medium, the SMAC protocol 
permits the local S 3 to authorize or not any send or receive accesses of interface units 
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to the medium. The enforced rules authorize an interface unit to send data to the 
medium when both levels of the interface and of the medium are the same. In this case, 
the state of the medium at a given time depends on the previous state and operations of 
interface units at the same level only. This fact implements the condition (5) and in 
particular, at Low level, the state of the medium depend only on points at the same Low 
level. 

I ,Dlow 

.... ~ t 

xl~ [ 

Fig. 9 Graphical translation of confidentiality properties 

Conversely, the enforced rules authorize an interface unit to receive data from 
the medium when the level of the interface dominates (high) the level of the medium 
(low). So a point Yhigh in the interface may depend on the state of the medium and it 
was showed that this state of the medium only depends on points at the same level. 
This state is a point Xlo w in Dlo w and Xlo w ~ cone(Yhigh). This fact is in accordance with 
the condition (6). 

The definition of points includes objects and timing components. The 
conditions (5) and (6) with respect to timing components are ensured by the time 
slicing enforced by the SMAC protocol on the level of the medium. Slices are 
computed on a Low level information basis, from reservations. So, for example, 
durations assigned to send or receive operations exerted by an interface unit depend 
on: firstly, durations of time slices which are assigned to each level of the medium, and 
secondly, on the state of the medium. We have showed that both depend on points 
whose lewel is dominated by the level of the interface. 

7.2 With respect to integrity 

When integrity is the addressed property, the same approach can be used. The 
set Alt  s contains the points that a user, or more generally a subject s is able to alter and 
the set R s contains the points the subject s has the right to alter in accordance with the 
security policy. So, the definition of the security given in (1) is the same here: the 
system is secure if a subject s can act only on the objects he has the right to act: 

A s c R s (7) 

The set R s is also given by 

g s = [x / lifx ) <_ li(s)] 

where li(s ) denotes the clearance of the user in integrity and li(x ) is the integrity 
level of point x. The interface rule expresses conditions on the integrity level of an 
input point x i and the clearance level of the subject s who can alter this point: 

V s ,  x i ~ A s ~ li(s ) >- li(xi) (8) 
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The second condition requires monotonic decreasing of levels over causal 
dependencies. If values of levels increase with integrity of points: 

Vx, k/y, x ----) y ~ li(x ) > li(y ) (9) 

Dep-Lemma.  If condition (3) is enforced 

x ~ dep(y)  ~ li(Y ) > li(x ) 

Proof. The proof is trivially similar to the proof of cone-lemma. �9 

Fact  3. If  in a system Conditions (2) and (3) are enforced then the system is secure. 

Proof. We must show that (2) and (2) ~ (7 ) .  If  x ~ Al t  s then x ~ A s or 3y ~ A s / x 
dep(y).  If  x ~ A s, then by (2) , li(x ) < li(s).. In the other case 3y ~ A s / x ~ dep(y),  and 
then li(x ) < li(y ) < li(s ) by (2) and Dep-Lemma. So x is in R s. II 

With respect to integrity, the both rules (2) and (3) ensure that any subject s 
who has the right to alter an input point x i is allowed to alter any point of dep(xi).  So 
the alteration of x i by s will have an impact only on points that s has the right to alter. 

A convention on levels can be chosen: a level I is a pair (loli) where l c denotes a 
confidentiality level and l i is an integrity level and a comparison rule on levels may be: 

(l I <- 12) r (lcl, lil) <- (lc2,li2) r (lcl <- Ic2 ) A (lil >-- li2) 
With such a convention, the confidentiality conditions (3) can be extended with 

condition (3) in a simple way by using a level l for integrity and confidentiality: 

Vx,  Vy, x --~ y ~ l(x) <__ l(y) (10) 
Then the send and receive conditions can be expressed in the same way for both 

confidentiality and integrity. 

Let Xlo w and Yhigh two points that belong to two different domains of integrity 
Dlo w and Dhig h in the system. These domains may be defined by D l = {x / li(x ) = l] if 
li(x ) is the integrity level o fx  and Dhig h t~ Dlo w = Q~. So Dlo w denotes a domain of low 
integrity and Dhig h denotes a domain of high integrity. Referring to the rule (3) , then 
dep(Xlow) and dep(Yhigh) are sets of points in the system and the rules ensure that 

dep(xto w) ~_ Dlo w (I1)  

dep(Yhigh) c Dlo w k_) Dhig h (12) 

I, t 

Yhigh ~ - ~  Drl,h 

Xl~ Dlnw 

Fig. 10 Graphical translation of integrity properties 

The condition (11) express that the alteration of any point in Dlo w will alter no 
information about points in Dhig h. So the only allowed flows of information are from 
high to low (condition (12) ) .  This is in accordance with classical results as expressed 
by Biba [2] for example. 
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This is achieved in the context of the multilevel LAN by enforcing the same 
mechanisms of control as for confidentiality. Each communicating host and interface 
unit belongs to an integrity domain, and every elementary transfer of information is 
submitted to this control of  information flows. 

By defining integrity domains and by controlling flows between these domains 
according to the previous rules, we ensure there is no way, at a low integrity domain, to 
use any input covert channel in order to insert corrupted instructions or data in a high 
integrity domain. 

These results may be applied to isolate and minimize functions which are vital 
to run a critical process inside. Criticality levels may be defined; they reflect the degree 
of criticality of functions or data with respect to the system objective. So a High 
critical domain is fully protected from eventually malicious operations exerted from a 
Low critical domain. This scheme is interesting in a security point of view, but also for 
cost considerations. Indeed, it permits to minimize the High critical domain by 
including in it the only really critical functions and data. Techniques used during the 
development of such a system and during its running in order to ensure dependability 
properties may be reduced by limiting them to the only critical domain. 

7.3 With respect to availability 

A particular case of the integrity property which was previously described 
offers some kind of availability. Indeed, the SMAC protocol which is used to share the 
communication medium of the multilevel LAN tends to separate domains of integrity/ 
criticality and to regulate flows between these domains according to multilevel rules. 

In particular, the time slicing exerted on the level of the medium coupled with 
the ability assigned to the interface units of sending or receiving according to time 

s l i ces  make impossible for an interface at a Low integrity level to disrupt the use of the 
communication medium by interfaces at a High level of integrity. When 
communications occur at a given level, there is no way for interface units at an other 
level to get any send access to the medium. 

So the availability of services inside the domain of High integrity can not be 
countered by malicious processes at a Low level of integrity or by a crash or a bad 
functioning occurring on an host at a lower level of integrity. 

So, some mechanisms may be employed to ensure high availability inside the 
high integrity domain itself. But their use is limited inside this domain only, and the 
availability property is not put in danger by lower integrity levels, thanks to the 
separation enforced by the DS 3 and the SMAC protocol. 

8 Conclusion 

Techniques and mechanisms suggested here were firstly designed and 
developed in order to protect the confidentiality of data, processes and 
communications over a LAN. This protection is based on a control of dependencies 
that enforces an exhaustive control of information flows. It relies upon a distributed 
security subsystem composed of a particularly restricted subset of hardware 
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mechanisms: they are in charge of ensuring that accesses of interface units to the 
medium are done in accordance with multilevel rules. This leads to share the medium 
in a particular way which defines a secure medium access control (or SMAC) protocol. 
This protocol may be viewed as an extension of an existing MAC protocol, as CSMA/ 
CD. 

This logical separation, achieved by means of this protocol, may be also used in 
order to separate integrity levels. In particular, the extremely strong control of 
information flows which is enforced can isolate some domain where a high level of 
integrity may be needed drastically. This domain is then protected from other domains 
of low integrity that can not corrupt its behaviour: in particular they can not enforce 
any communication channel to send malicious data or pieces of code. Such levels of 
integrity can be used in critical applications to protect some vital functions. As a 
particular case of the application of control of dependencies to integrity, some needs in 
availability may be answered also. The separation between high integrity and low 
integrity domains ensure that any (malicious or not) failure in a low integrity domain 
will not disrupt the good functioning inside a high integrity domain. 

This whole security protects efficiently all the information that needs to be 
protected, and only this information. We feel that this approach is well adapted to the 
real world, where in fact, few informations and functions necessitate to be protected. 
So, such a system does not penalize the use and processing of most of the data which 
belong to an unprotected domain. Rather, it makes lighter the amount of protected 
processing by reserving it to the only data which necessitate it. 

A real system is actually under development upon these principles. Some 
mechanisms and functions of distributed operating systems are beeing built above this 
basic architecture. They implement classical distributed operating services, but, taking 
account of the underlying architecture and of its multilevel functioning, they 
implement also new multilevel distributed operating services: sharing files between 
hosts running at different levels, or accessing remote files, running processes on 
remote hosts. Then the challenge is no longer building a secure distributed operating 
system but to building some distributed operating services upon a secure architecture, 
and taking advantage of its security features. 
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