
A u t h e n t i c a t i o n via Mult i -Service Tickets
in the Kuperee Server

(Extended Abstract)

T h o m a s Hard jono 1,2 and Jennifer Seber ry 1

1 Centre for Computer Security Research, University of Wollongong,
Wollongong, NSW 2522, Australia

2 Department of Computing and Information Systems,
University of Western Sydney at Macarthur, Campbelltown, NSW 2560, Austral ia

A b s t r a c t . The subject of this paper is the authentication services as
found in the Kuperee 3 server. The authentication protocol is based on the
Zheng-Seberry public key cryptosystem, and makes use of the distinct
features of the cryptosystem. Although couched in the terminology of
Kerberos, the protocol has subtle features, such as the binding together
of two entities by a third entity, leading to the need of equal co-operation
by the two entities in order to complete the authentication procedure.
Another impor tant feature is the use of a multi-service ticket to access
multiple services offered by different servers. This removes the need of
the Client to consult the Trusted Authority each time it needs a service
from a Server. In addition, this allows an increased level of parallelism
in which several Servers may be concurrently executing applications on
behalf of a single Client. The scheme is also extendible to cover a more
global scenario in which several realms exist, each under the care of a
t rusted authority. Finally, the algorithms that implement the scheme are
presented in terms of the underlying cryptosystem. Although the scheme
currently employs a public key eryptosystem, future developments of the
server may combine private key cryptosystems to enhance performance.

1 I n t r o d u c t i o n

In the las t two decades an explosion of interest have been shown in the use of
c r y p t o g r a p h i c techniques to provide some solu t ions to the p rob l ems of infor-
m a t i o n security. Previously, the s tudy of these techniques was confined only
to wi th in the m i l i t a r y and intel l igence communi t ies , wi th the p r i m a r y non-
government app l i ca t i on being in the bank ing sector. However, more recen t ly
these techniques have been widely recognized and app rec i a t ed as be ing crucial
to secur i ty and they have been inco rpora t ed into the more genera l c o m p u t i n g
and i n fo rma t ion sys tems environments . Special ized a rch i tec tures p rov id ing for
specific secur i ty services have found rea l iza t ion wi thin the cl ient-server p a r a d i g m .

3 Kuperee is a mythical enormous black kangaroo in the Dreamtime Myths of the
Australian Aboriginal people. It moves at a high speed, and leaves havoc and terror
wherever it goes.

144

The two types of servers that have emerged corresponding to the two ap-
proaches in cryptographic techniques are Authentication Servers, which embody
private-key cryptosystems, and Certification Servers, which rely on public-key
cryptosystems. Both types of servers provide for services relating to the secrecy
of communications and interactions between entities, and for the authentication
of one entity by another. The development of these servers represent the bridg-
ing stage from systems with little integrated security features to systems with
security as one of their major design considerations. With most of the secure
systems being expensive and less compatible with existing systems, the notion
of a bridging server that provide for secrecy and authentication is an attractive
one.

In the past few years a number of systems for authentication services have
been developed, among others the Kerberos authentication service [1, 2, 3] within
Project Athena at MIT [4], SPX [5, 6] as part of the DEC's Distributed Systems
Security Architecture (DSSA) [6] and Sesame [7, 8, 9] within ECMA's standard
for security framework.

Kerberos adopts the private (shared) key approach, and is a trusted third-
party authentication service developed from the Needham-Schroeder protocol [10]
which has subsequently been improved and shown to be reliable [11, 12]. The
Kerberos authentication service provides a trusted intermediary between a User
or Client that requires services from a Server. It authenticates the User or Client
by way of a shared private key, and it provides a way for the Server to authen-
ticate the User or Client when it request the services of the Server.

Due to the use of private key cryptography, the Kerberos authentication
service requires a key to be shared between the User or Client and the trusted
authorities in the system, namely the Key Distribution Center (KDC) and the
Ticket Granting Server (TGS) [3]. This, however, requires a great amount of
trust to be placed on the implementation of the trusted authorities, since their
compromise results in possible masquerade by the attacker of the User or Client
whose private key are stored with these trusted authorities [13].

In this paper we discuss the authentication service provided by the Kuperee
server. The authentication protocol is based on the Zheng-Seberry public key
cryptosystem [14], and makes use of the distinct features of the cryptosystem.
In general, the use of a public key cryptosystem provides an advantage in terms
of the trust level expected from a server [15]. Tha t is, a server based on a pub-
lic key cryptosystem would hold certified public keys of Users and/or Clients,
and thus the compromise of the server does not lead to the compromise of the
corresponding secret keys.

Although couched in the terminology of Kerberos, Kuperee has a number
of subtle features, such as the binding together of two entities by a third entity,
leading to the need of equal co-operation by the two entities in order to complete
the authentication procedure. That is, a Ticket Granting Server has the ability
to bind together a Client and the Server that is providing the Client with some
services. In this case the Server cannot proceed without the cooperation of the
Client in the form of the client submitting a cryptographic authenticator to the

145

server. The authenticator in this case is not an enciphered piece of information
(as in Kerberos), but rather it is a cryptographic component that contributes to
the successful authentication by the Server. This paper also focuses on a feature
of the scheme in which one mult i -serv ice ticket can be used by a Client to access
multiple Servers, thereby reducing the need of the Client to continually p rompt
the TGS for service tickets. This allows an increased level of parallelism in which
several Servers may be concurrently executing applications on behalf of a single
Client. The scheme is also extendible to cover a more global scenario in which
several realms exist, each under the care of a Trusted Authority.

Although we initially model our approach on Kerberos and employ its lan-
guage in our discussions, we by no means limit ourselves to the use of the un-
derlying cryptosystem following the steps of Kerberos. The underlying public
key cryptosystem has more to offer and future developments of Kuperee will
address more efficient ways to achieve authentication than currently presented
in this paper. Efforts such as in S P Y [5] clearly show that better performance
and security maY be achieved by combining suitable implementat ions of both
public key and private key cryptosystems.

In the next section (Section 2) for the sake of clarity we briefly summarize the
Kerberos authentication service (version 5) as described in [3]. Readers unfamil-
iar with Kerberos are directed to [1, 3] for more details on its implementat ion.
In Section 3 we present our approach using the public key cryptosystem of [14].
This is continued in Section 4 by the description of our method to generate a
multi-service ticket for multiple services. The algorithms that implement our
approach are then given in Section 5. The flexibility of our approach is further
illustrated in Section 6 by inter-realm authentication in a hierarchically orga-
nized realms or domains, each managed by a TGS. Section 7 briefly discusses
the security level achieved by our solution, while the paper is finally closed in
Section 8 by some concluding remarks.

2 K e r b e r o s a u t h e n t i c a t i o n s e r v i c e

In the Kerberos authentication system [1, 3] the entities that interact with the
authenticat ion service are called principals. The term can be used for Users,
Clients or Servers. Commonly, a user directs a Client (eg. a program) on a
machine to request a service provided by a Server on a remote machine. The
Server itself is usually a process on the remote machine, and different services
are usually taken to be available on differing remote machines. Kerberos employs
two types of credentials to achieve authentications, namely the t ickets of the form

{ s , c, addr , t ime s t a m p , l i f e t i m e , K ~ ,c }

and the authent ica tors of the form

{ c, addr , t ime st a m p }

which is enciphered using a key common to the issuer and the recipient. Here the
ticket consists of the Server and Client identities, followed by the Client 's network

146

address, a unique timestamp, the lifetime of the ticket and finally by the common
key to be shared between the Server and the Client [1]. In this example, the ticket
contains the key Ks,c shared between the Client c and the Server s. The Server
is trusted to generate such shared keys and when the ticket is to be given to a
Client c then it must be enciphered using the Client's key K~. In the remainder of
the paper we will employ the notation used for Kerberos in [1, 3] with respect to
the encipherment/decipherment operation. That is, the operation "{}K" means
that the contents within the braces "{}" are enciphered/deciphered using the
key K (Section 5 gives the precise algorithms for the encipherment/decipherment
operations).

In brief, the interactions within the authentication service consists of the
Client requesting the Key Distribution Center (KDC) for a ticket-grunting ticket
to be submitted by the Client to the Ticket Granting Server (TGS). The TGS
then issues the Client with a service ticket which has a shorter lifetime com-
pared to the ticket-granting ticket. The service ticket is then used by the Client
to request the services of the Server which is mentioned in the ticket. These
two stages are also referred to as the credential-initialization and client-server
authentication protocols respectively in [13].

co-located

Fig. 1. Obtaining a service ticket (after [3])

The actions of the Kerberos authentication service following the description
of [3] is given in the following (Figure 1).

1. Client ~ KDC: c, tgs
2. KDC --+ Client: {Kc,tgs}gc, {Tc,tgs}Ktg"
3. Client ~ TGS: {Ac}Ko.,g,, {Tc,tgs}g,~, s
4. TGS --* Client: {Kc,,}Ko,,~ , {Tc,s}g,
5. Client --* Server: {Ar {Tr

147

6. Server ~ Client: {timestamp + 1}Ko,"

In step 1 the Client c requests the Key Distribution Center (KDC) for an ini-
tial ticket and credentials to be presented to the Ticket Granting Server (TGS).

In step 2 the KDC generates a session key Kc,tg, that will be shared between
the Client and the TGS. A copy of this key is enciphered using the Client's key
Kr to guarantee that the Client can obtain it securely. The ticket-granting ticket
Tc,tg~ to be presented to the TGS by the Client already contains a copy of the
session key Kc,tg,. Hence, both the Client and the TGS can later communicate
securely using this session key shared between them. Note that the ticket is
enciphered using the TGS's private key Ktg. known only to the KDC and the
TGS.

In step 3 the Client then creates an authenticator Ac to be read only by the
TGS (hence enciphered using Kc,r and presents it to the TGS together with
the ticket {Tc,tg~}K,~" which the Client obtained from the KDC.

On receiving the authenticator and ticket-granting ticket from the Client, the
TGS deciphers and authenticates the ticket (step 4). The TGS then generates
another session key Kc,s to be shared between the Client c and the Server s. The
TGS also creates a service ticket destined for the Server. This ticket Tc,, contains
a copy of the new session key, and its lifetime is shorter than the lifetime of the
initial ticket Tc,tgs. The TGS knows the private key of every Server s, and ticket
is made exclusively for the eyes of the Server by enciphering it using Ks. A copy
of the session key Kc,s (hidden by enciphering it using Kc,tgs) accompanies the
ticket to the Client.

In step 5, the Client enciphers
I'2c,s which it will share with the
together with the ticket obtained
Server to prove its identity which

the authenticator Ac using the session key
Server s. This is then sent to the Server s
from the TGS. The Client may request the
can be achieved by the Server incrementing

the timestamp value by one, and enciphering the result using the session key
shared between the Server and the Client (step 6).

3 P u b l i c k e y a p p r o a c h

In this section we propose an approach based on public key cryptography. Our
approach is founded on the public key cryptosystem of [14], and some of its
constructs that are necessary for the current discussion will be presented in the
following. The algorithms that implement the cryptosystem are deferred until
Section 5 in order to simplify discussion.

In the public key cryptosystem of [14] a secret key is chosen randomly and
uniformly from the integers in [1, p - 1], where the prime p is public and is used to
generate the multiplicative group GF(p)* of the finite field GF(p). The generator
of this multiplicative group is denoted as g and it is a publicly known value. This
usage of 9 and p is inspired by notable works of [16] and [17]. The corresponding
public key is then produced by using the secret key as the exponent of 9 modulo
p. In the remainder of this paper all exponentiations are assumed to be done
over the underlying groups.

148

For the current usage of the cryptosystem, assume that the secret and public
key pairs of the principals are as follows. The KDC has the pair (Xkdc,Ykdc --
gXk~o), the Client has (x~,yr - g~:~ the TGS has (Xta,,Yegs = gX, g,), while
the Server has (Xs ,Ys =- gX,) . The keys Ykac, yc, Yta~ and Ys are known to the
public as in other systems based on public key cryptography.

Each session secret and public key pair is denoted by (k , K - gk), and
their subscripts indicates which principals employ the key pair. Hence, the pair
(ke,tas, Kc,tgs) is used for interactions between the Client and the TGS. In our
case the tickets to be employed do not contain any keys, hence their form are:

{ s, c, addr, t imestarnp, l i f e t i m e }

3.1 G e t t i n g a n in i t i a l t icket

1. Client ~ KDC: c, tgs
2. KDC ---* Client: Kr Cr

The KDC first generates the session key pair (k~,tg~, Kc,tg~) to be used be-
tween the Client and the TGS.
The cryptogram Cr is the ticket-granting ticket Tr being enciphered
a s :

C~,tg~ - {Tc,ta~}rc.,9,

where
YI "lXkdedt'ke'lg" r~,ta, =- (Y~ ta*) (1)

3. Client --~ TGS: Ac,ta,, Kr Cc,ta,, s

On receiving the enciphered ticket Ce,tg8 together with its accompanying
session public key Kr the Client computes a Authent icator A~,tgs:

Ac,ts, =- (Ykdc If~,ta~) ~~ (2)

The authenticator, the received session public key and enciphered ticket-
granting ticket, and the identity of the destination Server s are then delivered
to the TGS.
The TGS employs the session public key Kc,tgs to compute its Decryptor
Dtgs, c a s :

Dtgs,r - (Ykdc Kc,tgs) x'~" (3)

This is then used to recreate the key rc,tgs that was used by the KDC to
encipher the ticket:

rr -= Ar Dtas,r

The resulting key rc,ta~ is then used to recover the ticket Tr

149

3.2 G e t t i n g a service ticket

In order to obtain the services of the Server the Client must obtain a service
ticket from the TGS to be presented to the Server. We continue the procedure
in the following steps.

4. TGS ~ Client: Kc,,, Co,,

In order to encipher the service ticket Tc,, the TGS must generate the session
key pair (kr Kr which is used as follows:

where
re., - (vc y ,)X,~.+ko. .

resulting in the cryptogram C,,,.
The cryptogram C,,, and the session public key K,, , are then delivered to
the Client.

5. Client --* Server: A,,,, K,, , , C,,,

As when dealing with the TGS, the Client must compute the authenticator
A,,, indicating its desire to use the service provided by the Server:

Ac,, =- (Y,g, I(~,,)~c

This authenticator, the received session public key and enciphered service
ticket are then presented to the Server whenever the Client requires the
service.
On first being presented with the (enciphered) service ticket, the Server must
compute its corresponding decryptor

9,,~ - (Y~a, K~,,) x"

The Server is then able to recreate the session key rc,s as:

rc,~ = Ar D,,c

to be used to obtain {T,,,llk~,,}
6. Server ---, Client: {timestamp + 1},.o

If required, the Server may respond to the Client's request of proving the
Server's identity. This can be done by the Server reusing the key kc,, that
was enciphered together with the service ticket Tr The key is reused to
create r,,c as:

rs,c =- (yc) X'+kc'"

to encipher {timestamp + 1}.
The Client can recreate the key rs,c as:

which is then used to recover and check {timestamp + 1}.

150

4 M u l t i - s e r v i c e t i c k e t

One interesting feature in Kuperee deriving from its usage of the public key
cryptosystem of [14] is its ability to present Clients with one service-ticket which
can be used with several Servers (Figure 2) This removes the need of the Client
to consult the TGS each time it needs a service from a Server. In addition,
this allows an increased level of parallelism in which several Servers may be
concurrently executing applications on behalf of a single Client. The level of
dependence of the Client on the TGS is also reduced since such multi-service
tickets maybe given a longer life-time, hence reducing the impact on the system
when the TGS is temporarily unavailable.

. s 1 6 3 . i

�9 ~ ~

Fig. 2. Obtaining a multi-service ticket

In this section the creation and use of the multi-service tickets is discussed.
First, the TGS must be notified by the Client about the q Servers s l , s 2 , . . . , Sq
that the Client wishes to access. We can repeat the last two steps (ie. steps 4
and 5) as follows:

M3. Client ~ TGS: Ac,tgs, Kc,tg,, C~,tgs, m = (Sl, s 2 , . . . , sq)
M4. TGS --, Client: Kc,m, Cc,rn (Rc,sl, Rc,s~, . . . ,Rc,,q)

The TGS prepares the service ticket Tc,m, generates the key pair (kc,m, Kc,m)
and enciphers the ticket into Cr

Cc,m -= {Tc,mllkc,m}rc,m

where
r~,m - (y~ Ys, Y,~ " . y , ,)X, , ,+k~,~

151

The TGS must also computer q number of selectors R~,,I, Re,s2,... ,Rr
which will be used by the Client to choose among the q specified Servers
sl, s2 , . . . , Sq. These selectors are computed as:

�9 " 8 q]

Rr = (Y., Y~3 "" . y,.)x,.,+ko,,,.

:

Rr = (Y,, g,~.. .y,~_~)x,, .+ko,~.

The cryptogram Co,,., the session public key K~,.. and the selectors are then
delivered to the client�9

M5 . Client ---* Server s~: At,m, K~,m, Cr Rc,~,

As in the single-service case, the Client must compute its authenticator to
be delivered to the Server. Thus,

Ar - (Ytg, Kr ~c

However, in this multi-service case, the Client must select the Server from
which it requires service. Assuming that the Clieat requires service from
Server s~ (1 < v < q), then the Client must employ the selector R
This authenticator At,m, the received session public key Kc,,~, the enciphered
service ticket Cr and the selector Rc,s~ must then be presented to the
Server Sv.
On first being presented with the (enciphered) service ticket, the Server s~
must compute its corresponding decryptor

m,,,~ = (Y,g, K~,,,,) x'o

The Server is then able to recreate the enciphering key rr as:

rc,m =- Ac,m Dm,c Rc,s~

to be used to decipher the service ticket Cc,m.

5 A l g o r i t h m s

As described briefly in Section 3, our approach is based on the public key cryp-
tosystem of [14]. In this section we provide further notations for the cryptosys-
tem and present the algorithm for the encipherment and decipherment of tickets
based on a modified version of the original cryptosystem of [14]. The algorithms
expresses only the encipherment (decipherment) of the plaintext (ciphertext)
tickets, and do not incorporate the steps taken by the KDC, Client, TGS and
the Server. Hence, the reader is encouraged to read them in conjunction with
the steps provided in Sections 3.2 and 3.1.

152

5.1 N o t a t i o n

The following notation is taken directly from [14]. The cryptosystem of [14] em-
ploys a n-bit prime p (public) and a generator g (public) of the multiplicative
group GF(p)* of the finite field GF(p). Here n is a security parameter which
is greater that 512 bits, while the prime p must be chosen such that p - 1 has
a large prime factor. Concatenation of string are denoted using the "[[" symbol
and the bit-wise XOR operations of two strings is symbolized using "@". The
notation w[i...j] (i _< j) is used to indicate the substring obtained by taking the
bits of string w from the i-th bit (wi) to the j - th bit (wj).

The action of choosing an element x randomly and uniformly from set S is
denoted by xEtcS. G is a cryptographically strong pseudo-random string gener-
ator based on the difficulty of computing discrete logarithms in finite fields [14].
G stretches an n-bit input string into an output string whose length can be an
arbitrary polynomial in n. This generator produces O(log n) bits output at each
exponentiation. All messages to be encrypted are chosen from the set Z p(n),
where P(n) is. an arbitrary polynomial with P(n) >_ n and where padding can
be used for messages of length less than n bits. The polynomial g = s spec-
ifies the length of tags. The function h is a one-way hash function compressing
input strings into t-bit output strings. In the remainder of this paper all expo-
nentiations are assumed to be done over the underlying groups. The reader is
directed to [14] for a comprehensive discussion on the constructs of the family
of cryptosystems.

5.2 G e t t i n g in i t i a l a n d service t icke ts

In the process of getting an initial ticket the Clients asks the KDC to prepare
the ticket to be submitted by the Client to the TGS. The KDC first performs
kc,tg~En[1,p- 1] followed by the calculation Kc,tg~ = gko.,9,. The KDC then
enciphers.the ticket Tc,tg~ using the key rc,tg~ by invoking Encipher (Algorithm 1)
with the input parameters (p, g, rr Tr resulting in the output C~,tg~.

A l g o r i t h m 1 Encipher(p, g, r, T)

1. z = G(r)ll...(p(n)+t(n))].
2. t = h(T (~ r).
3. m = (Tilt).
4. C = z G m .
5. output (C).

e n d

The KDC then sends the resulting ciphertext Cc,tgs and the session public key
Kc,tgs to the Client who proceeds to compute Ac,tgs. These values are then sub-
mitted by the Client to the TGS who tries to decipher Cc,tgs. This is done by the

153

TGS first computing Dtg,,r and using it and the received values as input to De-
cipher (Algorithm 2). Tha t is, the TGS inputs (p, g, Ar , K~,te, , Cr , Dtg,,r)
and receives the output Tc,tgs.

A l g o r i t h m 2 Decipher(p, g, A, K, C, D)
1. r ' = A D .
2. z' = G(r')[1...(p(n)+l(n))].
3. m = z' (~C.
4. T ' = mil...p(n) I.
5. t I = m[(p(n)+l)...(P(n)+l(n))].
6. if h(T' @ r') = t' then

output (T')
else

output (O).

e n d

The same procedure is followed by the TGS in enciphering the ticket to
be submit ted by the Client to the Server. The minor difference in this case is
that the TGS appends a response key kr (ie. the secret half of the session
key) to the ticket Tc,~. This addition does not affect the algorithms and their
security in any way. Hence, the TGS invokes Encipher (Algorithm 1) with the
input parameters (p,g, re,e, (Tc,~ Ilkc,~)) resulting in the output C The Server
deciphers C~,~ into (T~,~llkc,,) using Decipher (Algorithm 2) with input values
(p,g, Ac,~K~,~,Cr

6 H i e r a r c h i c a l i n t e r - r e a l m a u t h e n t i c a t i o n

The integration of security into distributed systems has introduced the need to
manage the information pertaining to the security functions in the distributed
system. The most common and important need is that of providing a method
to manage cryptographic keys of the components in the distributed system.
One approach that may be adopted is that of organizing the components into a
hierarchy consisting of a number of domains or realms, each being managed by
an independent trusted authority (eg. TGS). This approach has the advantage
of the localized distribution of new keys, hence reducing the replication of keys
across the entire distributed system.

Within the context of our discussion a domain or realm can consist of Clients,
Servers, a local managing TGS and of other TGSs that manage their own realms.
In this manner, the components are organized into a hierarchy based on the
TGSs, with each TGS managing a certain number of Clients, Servers and other

154

TGSs. A Client within a realm may request service from a Server in the same
domain in the manner previously discussed. However, it is also natural for a
Client to request service from a "foreign" Server which is located in a different
realm on another part of the hierarchy. In this section we address inter-realm
authentication together with some accompanying issues. Our approach is general
enough to be applicable to a number of areas, one being the X.500 Directory
Services [18].

. ~
. . . o

~ ~ . o

B

' C l i e n t : . "1 "..: i 'l" i Server i
.

Fig. 3. A hierarchy of TGSs

In our usage, a hierarchy is assumed to be a directed acyclic graph and each
node in the hierarchy is assumed to have only one parent node. An example of
such a hierarchy that will be used in the following discussions is given in Figure 3.
In Figure 3 the Client is located in the domain or realm under the jurisdiction
of the TGS A. The Client requires the service provided by a Server which is
located within the realm of TGS C. In this case the TGS A must enroll the aid
of its parent TGS B to forward the Client's request to TGS node C. Two general
arrangements of the keys of the nodes in the hierarchy will be considered in the
following. Note that the terms "TGS" and "node" will be used interchangeably
to simplify discussion. In our example, we assume that the TGSs A, B and C
have the key pairs (Xtg,a, Y*9,a), (Xtgsb, Yt98b) and (Xtg~c, Ytg,c) respectively.

6.1 Localized keys

One possible arrangement of keys in the hierarchy is based on their maintenance
on a per realm basis. That is, in this arrangement a TGS node holds the public

155

key of only its parent node and all its children nodes. This arrangement is similar
to the arrangement of directories in [19]. Using Figure 3 as an example, TGS
node B has the public key of its parent and of TGS nodes A and C. However, B
does not have the public keys of the descendants of TGS nodes A and C. In this
situation the TGS node A must refer the Client to node A's parent, namely node
B. The node B, not knowing the public key of the Server must then refer the
Client to B's child node C. Since node C is the trusted authority of the realm
in which the Server resides, node C knows the public key of the Server and thus
can forward the Client's request to the Server. These steps are shown in the
following (Figure 4). Note that in essence, the Client must interact with every
TGS node between its own TGS node (A) and the common ancestor node (B),
and between the common ancestor node and the destination's TGS node (C).
The deeper the Client is located in the hierarchy from the common ancestor, the
more interactions it has to perform in order to reach the destination.

,' ,J
i

i
t e

e e

. - ' ' " - " - . B

l / ' ~ - - 5

,t

, , , / a j .
, , , , , 4,.

2" ',', ,' 4 / . - " - . . - - - ' " ~' \

C l i e n t - - - ~ - - ~ - ~ - - S e r v e r

Fig. 4. Authentication with localized keys

1. Client ~ KDC: c, tgsa
2. KDC ---* Client: Kc,tgsa, Cc,tgsa
3. Client --* TGS A: Ac,tgsa, Kc,tgsa, Cc,tgsa, s
4. TGS A ---. Client: Kc,tg~b, Cc,tg~b
5. Client ---* TGS B: Ac,tg~b, Ifr Cr s
6. TGS B ~ Client: Kc,tgsc; Cc,tgsc
7. Client ---* TGS C: Ac,tg~r Kc,tg~r C~,~9~c, s
8. TGS C --* Client: Kr Cc,~
9. Client ~ Server: Ac~, K~,s, C~,s
10. Server ~ Client: { t irnestamp + 1}

156

6.2 G l o b a l i z e d keys

Another possible arrangement of keys in the hierarchy is a more globalized one,
in which a node knows not only the public key of all its descendant nodes, but
also the public key of all its ancestor nodes (bearing in mind that a node only
has one parent). Here a node does not have the public keys of any of its sibling
nodes nor that of their descendants. Although such a configuration is costly in
terms of the number of messages to be delivered when a node generates a new
pub!ic key, the gains occur during the interaction with nodes located in other
realms. Note that in our approach the public keys are not distributed in a fully
globalized manner. That is, since a node does not have the public keys of its
siblings, it must request the aid of its parent when dealing with such siblings.
However, the steps used in our approach can be modified in a straight-forward
manner to suit cases in which a node has a copy of the public key of every other
node in the hierarchy.

Returning to our scenario where a Client requires the services off.ered by a
foreign Server, the TGS in the Client's realm has more flexibility in issuing the
enciphered ticket. Hence, with a TGS node knowing the public keys of all its
ancestors, the node can find a common ancestor between itself and the TGS who
manages the realm in which the Server resides. Looking back at Figure 3, the
TGS node A (managing the Client's realm) and the TGS node C (managing the
Server's realm) have a common ancestor (parent) in the TGS node B.

In this case, the TGS node A must prepare the enciphered ticket to be deci-
pherable by the common ancestor (node B). This common ancestor node B must
then locate the desired Server and re-encipher the ticket in such a way that it is
decipherable by the Server with the necessary approval of the TGS within the
Server's realm. That is, the ticket must be decipherable by the Server with the
approval of the TGS node C in the form of node C sending a decryptor for the
ticket to the Server. Note that only TGS A and C are involved with the common
ancestor B, eventhough both TGSs A and C may have many other ancestors
between them and TGS B respectively. Hence, in such a globalized key approach
only a maximum of three TGSs (A, B and C) are invoked independent of the
depth of the two TGS nodes (A and C) from their common ancestor (B). This
scenario is expressed in the following steps (Figure 5).

1. Client --* KDC: c, tgsa
2. KDC ~ Client: Kc,~g,a, C~#g,a
3. Client --* TGS A: Ac,tg,a, Kc,tg,a, Cc,tg, a, s
4. TGS A ---* TGS B: Kr C~,tg,b

Here
C~, ,g ,b - {To, tg ,b}rc , ,9,~

where
~Xtg,o +kc tgsb

1"c,tgsb ~ (Yc tgsb)

157

t t 4
o �9

t s
t t

s �9
I n

s ~
a a

' B

I', . - 4 " ,

,,,, . ../.8,,,,' !" ,o :'
1 ~l I I , , A I _ / / ~'t_C

I

' ' ,./ " k t i 11 "~ , , , 5,,,~ .,
2 ' ' , ' ' / i \ ~ ' ,

,, , , , 1 : 3 1 ..-" \ ,
, , , ~,/_.-'_:----- \ ,

L~-.J-- 1..1
Client Server

Fig. 5. Authentication with globalized keys

5. TGS A --~ Client: [~c,tgsb
6. Client --~ TGS B: A~,ta~

where

A~,u,a - (Yu~a K~,U~b) ~c

7. TGS B --* TGS C: Kc,tg Cc,tg,cs
The TGS B computes

Dtgsb,tgsa -~ (Ytgsa Kc,tgsb) X*~'b

and recreates the key

rc,tgsb :-- Ac,tgsa Dtgsb,tgsa

in order to decipher Cr into Tc,tgsb.
TGS B then renames the ticket into Tc,tgscs and enciphers it as

where

rc,tgscs =-- ~Yc tgsc s)

8. TGS B --~ Client: Kc,ta~r
9. TGS C -~ Server: Kc,ta Cc,tg Dtgsc,ta,b

where

158

10. Client ~ Server: Ac,tgsb
where

At,rash ~ (Ytgsb Kc,ta,cs) zc

The Server then computes

Ds,tgsb =- (Ytgsb Kc,tgscs) X"

and recreates the key

rc,tgscs ~ Ac, tgsb Dtasc, tgsb D,,tg,b

in order to decipher Cc,tg~r into {Tc,tvc, llkc,tg, c,}
11. Server --. Client: {timestamp + 1}r,, ~

7 Security achieved

One of the primary motivating reasons for employing the cryptosystem of [14] is
its strength against chosen ciphertext attacks [20]. In such an attack the attacker
has access to the deciphering algorithm and can feed the algorithm with any
input ciphertext in order to obtain its corresponding original plaintext. From
these matching instances the attacker can then obtain information to finally
cryptanalyze and break a given ciphertext.

The cryptosystem is promising because it has been show in [14] to be secure,
not only against chosen ciphertext attacks, but further against adaptively chosen
ciphertext attacks. In this type of attacks the attacker is permitted to select the
input ciphertext which are correlated to the target ciphertext. Hence, the attacker
continues to have access to the enciphering algorithm even after the attacker has
the target ciphertext. Clearly, the attacker is not permitted to feed the target
ciphertext into the deciphering algorithm.

In our mode of usage of the cryptosystem, the weakest point in the scheme
is equivalent to solving instances of the discrete logarithm problem [21]. More
specifically, in attempting to obtain any secret key that participated in the cre-
ation of an authenticator, a descriptor or a selector the attacker is faced with
solving a discrete logarithm problem. In attempting to obtain the plaintext ticket
from any given ciphertext, the attacker must break the cryptosystem.

8 Conclusion

In this paper we have discussed the authentication services as found in the Ku-
peree. Kuperee is based on the recent public key cryptosystem of [14], which has
been shown to be secure against the adaptatively chosen ciphertext attacks. The
protocol has subtle features, such as the binding together of two entities by a
third entity, leading to the need of equal co-operation by the two entities in or-
der to complete the authentication procedure. Furthermore, it allows a Client to
use a multi-service ticket to access multiple services offered by different Servers.

159

This removes the need of the Client to consult the TGS each time it needs a
service from a Server. In addition, this allows an increased level of parallelism
in which several Servers may be concurrently executing applications on behalf
of a single Client. Hierarchical inter-realm authentication has been illustrated
by way of two protocols based on the localized and globalized arrangement of
keys. In general public key cryptography provides the advantage of one-to-one
secure and authentic communications between entities in the system, something
which is not immediately available to approaches based on private key cryptog-
raphy. Our selection of the cryptosystem of [14] is motivated not only by its high
level of security, but also by the ease at which session key compositions can be
created. The use of public key cryptography also has the advantage in that the
trusted authorities can be implemented with less trust since they only maintain
the publicly-known keys [13]. This offers considerable benefit over systems such
as Kerberos which are based on private key cryptography, since in these systems
the compromise of a trusted authority leads to the capture of all the private keys
of entities which are held by the trusted authority. The protocols in the current
work represents a step towards solutions based on the mixture of private key
and public key cryptography (such as in [5]), combining the advantages of both
philosophies.

A c k n o w l e d g e m e n t s We thank our colleagues, Azad Jiwa, Yuliang Zheng and
Anish Mathuria for their interest, comments and support in this project. This
work has been supported in part by the Australian Research Council (ARC)
under the reference number A49232172 and the University of Wollongong Com-
puter Security Technical and Social Issues research program. The second au-
thor has received additional funding from the ARC under the reference numbers
A49130102 and A49131885.

R e f e r e n c e s

1. J. G. Steiner, C. Neuman, and J. I. Schiller, "Kerberos: an authentication service
for open network systems," in Proceedings of the 1988 USENIX Winter Con]erence,
(Dallas, TX), pp. 191-202, 1988.

2. S. M. Bellovin and M. Merritt, "Limitations of the Kerberos authentication sys-
tem," Computer Communications Review, vol. 20, no. 5, pp. 119-132, 1990.

3. J. T. Kohl, "The evolution of the kerberos authentication service," in Proceedings
o] the Spring 1991 EurOpen Con]erence, (Troms~, Norway), 1991.

4. E. BMkovich, S. R. Lerman, and R. P. Parmelee, "Computing in higher education:
The Athena experience," Communications of the ACM, vol. 28, pp. 1214-1224,
November 1985.

5. J. J. Tardo and K. Alagappan, "SPX: Global authentication using public-key cer-
tificates," in Proceedings of the 1991 IEEE Symposium on Research in Security
and Privacy, (Oakland, CA), pp. 232-244, IEEE Computer Society, 1991.

6. M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson, "The Digital Distributed
Systems Security Architecture," in Proceedings of the 12th National Computer Se-
curity Conference, (Baltimore, MD), pp. 305-319, NIST/NCSC, October 1989.

160

7. R. Cole, "A model for security in distributed systems," Computers 8J Security,
vol. 9, no. 4, pp. 319-330, 1990.

8. T. A. Parker, "A secure European system for applications in a multi-vendor envi-
ronment (the SESAME project)," in Information Security: An Integrated Approach
(J. E. Ettinger, ed.), ch. 11, pp. 139-156, Chapmal & Hall, 1993.

9. P. Kaijser, T. Parker, and D. Pinkas, "SESAME: The solution to security for
open distributed systems," Computer Communications, vol. 17, no. 4, pp. 501-518,
1994.

10. R. M. Needham and M. D. Schroeder, "Using encryption for authentication in
a large network of computers," Communications of the ACM, vol. 21, no. 12,
pp. 993-999, 1978.

11. D. E. Denning and G. M. Sacco, "Timestamps in key distribution protocols," Com-
munications of the ACM, vol. 24, no. 8, pp. 533-536, 1981.

12. R. M. Needham and M. D. Schroeder, "Authentication revisited," Operating Sys-
tems Review, vol. 21, no. 1, p. 7, 1987.

13. T. Y. C. Woo and S. S. Lam, "Authentication for distributed systems," IEEE
Computer, vol. 25, pp. 39-52, January 1992.

14. Y. Zheng and J. Seberry, "Immunizing public key cryptosystems against chosen
ciphertext attacks," IEEE Journal on Selected Areas in Communications, vol. 11,
no. 5, pp. 715-724, 1993.

15. L. Gong, "Increasing availability and security of an authentication service," IEEE
Journal on Selected Areas in Communications, vol. 11, no. 5, pp. 657-662, 1993.

16. W. Diffie and M. E. Hellman, "New directions in cryptography," IEEE Transac-
tions on Information Theory, vol. IT-22, no. 6, pp. 644-654, 1976.

17. T. El Gamal, "A public key cryptosystem and a signature scheme based on discrete
logarithms," 1EEE Transactions on Information Theory, vol. IT-31, no. 4, pp. 469-
472, 1985.

18. ISO/IEC, "Information Processing Systems - Open Systems Interconnection - The
Directory - Information Model," 1989. ISO/ IEC 9594-1.

19. A. D. Birrell, B. W. Lampson, R. M. Needham, and M. D. Schroeder, "A global
authentication service without global trust," in Proceedings of the 1.986 1EEE Sym-
posium on Security and Privacy, (Oakland, CA), pp. 156-172, IEEE Computer
Society, 1986.

20. J. Seberry and J. Pieprzyk, Cryptography: An Introduction to Computer Security.
Sydney: Prentice Hall, 1989.

21. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP Completeness. New York: W. H. Freeman, 1979.

