Skip to main content

Combinatorial Linear Programming: Geometry Can Help

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1518))

Abstract

We consider a class A of generalized linear programs on the d-cube (due to Matoušek) and prove that Kalai’s subexponential simplex algorithm Random-Facet is polynomial on all actual linear programs in the class. In contrast, the subexponential analysis is known to be best possible for general instances in A. Thus, we identify a “geometric” property of linear programming that goes beyond all abstract notions previously employed in generalized linear programming frameworks, and that can be exploited by the simplex method in a nontrivial setting.

supported by the Swiss Science Foundation (SNF), project No. 21-50647.97.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adler and R. Saigal. Long monotone paths in abstract polytopes. Math. Operations Research, 1(1):89–95, 1976.

    MATH  MathSciNet  Google Scholar 

  2. N. Amenta and G. M. Ziegler. Deformed products and maximal shadows. In J. Chazelle, J.B. Goodman, and R. Pollack, editors, Advances in Discrete and Computational geometry, Contemporary Mathematics. Amer. Math. Soc, 1998.

    Google Scholar 

  3. D. Barnette. A short proof of the d-connectedness of d-polytopes. Discrete Math., 137:351–352, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. G. Bland. New finite pivoting rules for the simplex method. Math. Operations Research, 2:103–107, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Chvátal. Linear Programming. W. H. Freeman, New York, NY, 1983.

    MATH  Google Scholar 

  6. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963.

    MATH  Google Scholar 

  7. B. Gärtner. Randomized Optimization by Simplex-Type Methods. PhD thesis, Freie Universität Berlin, 1995.

    Google Scholar 

  8. B. Gärtner. A subexponential algorithm for abstract optimization problems. SIAM J. Comput., 24:1018–1035, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Gärtner, M. Henk, and G. M. Ziegler. Randomized simplex algorithms on Klee-Minty cubes. Combinatorica (to appear).

    Google Scholar 

  10. B. Gärtner and V. Kaibel. Abstract objective function graphs on the 3-cube-a characterization by realizability. Technical Report TR 296, Dept. of Computer Science, ETH Zürich, 1998.

    Google Scholar 

  11. B. Gärtner and E. Welzl. Linear programming-randomization and abstract frameworks. In Proc. 13th annu. Symp. on Theoretical Aspects of Computer Science (STAGS), volume 1046 of Lecture Notes in Computer Science, pages 669–687. Springer-Verlag, 1996.

    Google Scholar 

  12. D. Goldfarb. On the complexity of the simplex algorithm. In S. Gomez, editor, IV. Workshop on Numerical Analysis and Optimization, Oaxaca, Mexico, 1993.

    Google Scholar 

  13. K. Williamson Hoke. Completely unimodal numberings of a simple polytope. Discr. Applied Math., 20:69–81, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Holt and V. Klee. A proof of the strict monotone 4-step conjecture. In J. Chazelle, J.B. Goodman, and R. Pollack, editors, Advances in Discrete and Computational geometry, Contemporary Mathematics. Amer. Math. Soc, 1998.

    Google Scholar 

  15. G. Kalai. A subexponential randomized simplex algorithm. In Proc. 24th annu. ACM Symp. on Theory of Computing., pages 475–482, 1992.

    Google Scholar 

  16. G. Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Programming, 79:217–233, 1997.

    MathSciNet  Google Scholar 

  17. L. G. Khachiyan. Polynomial algorithms in linear programming. U.S.S.R. Comput. Math. and Math. Phys, 20:53–72, 1980.

    Article  MATH  Google Scholar 

  18. V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha, editor, Inequalities III, pages 159–175. Academic Press, 1972.

    Google Scholar 

  19. J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica, 16:498–516, 1996.

    MathSciNet  MATH  Google Scholar 

  20. J. Matoušek. Lower bounds for a subexponential optimization algorithm. Random Structures & Algorithms, 5(4):591–607, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Sharir and E. Welzl. Rectilinear and polygonal p-piercing and p-center problems. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 122–132, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gärtner, B. (1998). Combinatorial Linear Programming: Geometry Can Help. In: Luby, M., Rolim, J.D.P., Serna, M. (eds) Randomization and Approximation Techniques in Computer Science. RANDOM 1998. Lecture Notes in Computer Science, vol 1518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49543-6_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-49543-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65142-0

  • Online ISBN: 978-3-540-49543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics