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Abstract. Web servers become overloaded when one or several server
resources are overutilized. In this paper we present an adaptive architec-
ture that prevents resource overutilization in web servers by performing
admission control based on application-level information found in HTTP
headers and knowledge about resource consumption of requests. In ad-
dition, we use an efficient early discard mechanism that consumes only a
small amount of resources when rejecting requests. This mechanism first
comes into play when the request rate is very high in order to avoid mak-
ing uninformed request rejections that might abort ongoing sessions. We
present our dual admission control architecture and various experiments
that show that it can sustain high throughput and low response times
even during high load.

1 Introduction

Web servers need to be protected from overload because web server overload
can lead to high response times, low throughput and potentially loss of ser-
vice. Therefore, there is a need for efficient admission control to maintain high
throughput and low response time during periods of peak server load. Servers
become overloaded when one or several critical resources are overutilized and
become the bottleneck of the server system. The main server resources are the
network interface, CPU and disk [8]. Any of these may become the server’s bot-
tleneck, depending on the kind of workload the server is experiencing [10]. For
example, the majority of CPU load is caused by a few CGI requests [4]. The
network interface typically becomes overutilized when the server concurrently
transmits several large files.

In this paper, we report on an adaptive admission control architecture that
utilizes the information found in the HTTP header of incoming requests. Com-
bining this information with knowledge about the resource consumption we can
avoid resource overutilization and server overload. We call our approach resource-
based admission control.

The current version of our admission control architecture is targeted at over-
loaded single node web servers or the back-end servers in a web server cluster.
The load on web servers can be reduced by distributed web server architectures
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that distribute client requests among multiple geographically dispersed server
nodes in a user-transparent way [29]. Another approach is to redirect requests to
web caches. For example, in the distributed cache system Cachemesh [30] each
cache server becomes the designated cache for several web sites. Requests for
objects not in the cache are forwarded to the responsible cache. However, not
all web data is cacheable, in particular dynamic and personalized data. Also,
load balancing mechanisms on the front-ends of web server clusters can help to
avoid overload situations on the back-end servers. However, sophisticated load-
balancing cannot replace proper overload control [13]. Another existing solution
to alleviate the load on web servers based on a multi-process architecture such
as Apache is to limit the maximum number of server processes. However, this
approach limits the number of requests that the server can handle concurrently
and can lead to performance degradation.

The main contribution of this work is an adaptive admission control architec-
ture that handles multiple bottlenecks in server systems. Furthermore, we show
how we can use TCP SYN policing and HTTP header-based control in a com-
bined way to perform efficient and yet informed web server admission control.

Resource-based admission control uses a kernel-based mechanism for over-
load protection and service differentiation called HTTP header-based connection
control [31]. HTTP header-based connection control allows us to perform admis-
sion control based on application-level information such as URL, sets of URLs
(identified by, for example, a common prefix), type of request (static or dynamic)
and cookies. HTTP header-based control uses token bucket policers for admis-
sion control. HTTP header-based connection control is used in conjunction with
filter rules that specify application-level attributes and the parameters for the
associated control mechanism, i.e. the rate and bucket size of the policer.

Our idea to avoid overutilization of server resources is the following: we collect
all objects that when requested are the main consumers of the same server
resource into one directory. Thus, we have one directory for each critical resource.
Each of these directories is then moved into a separate part of the web server’s
directory tree. We associate a filter rule with each of these directories. Hence,
we can use HTTP header-based control to protect each of the critical resources
from becoming overutilized. For example, CPU-intensive requests reside in the
cgi-bin directory and a filter rule specifying the application-level information
(URL prefix /cgi-bin) is associated with the content at this location.

When the request rate reaches above a certain level, resource-based admis-
sion control cannot prevent overload, for example during flash crowds. When
such situations arise, we use TCP SYN policing [31]. This mechanism is effi-
cient in terms of resource consumption of rejected requests because is provides
“early discard”. The admission of connection requests is based on network-level
attributes such as IP addresses and a token bucket policer.

This paper also presents novel mechanisms that dynamically set the rate of
the token bucket policers based on the utilization of the critical resources. Since
the web server workload frequently changes, for example when the popularity
of documents or services changes, assigning static rates that work under these
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changing conditions may either lead to underutilization of the system when the
rates are too low or there is a risk for overload when the rates are too high. The
adaptation of the rates is done using feedback control loops. Techniques from
control theory have been used successfully in server systems before [2,14,11,20].

We have implemented this admission control architecture in the Linux OS
and using an unmodified Apache web server, we conducted experiments in a con-
trolled network. Our experiments show that overload protection and adaptation
of the rates works as expected. Our results show higher throughput and much
lower response times during overload compared to a standard Apache on Linux
configuration.

The rest of the paper is structured as follows. Section 2 presents the system
architecture including the controllers. Section 3 presents experiments that eval-
uate various aspects of our system. Section 4 discusses architectural extensions.
Before concluding, we present related work in Section 5.

2 Architecture

2.1 Basic Architecture

Our basic architecture deploys mechanisms for overload protection and service
differentiation in web servers that have been presented earlier [31]. These mech-
anisms control the amount and rate of work entering the system (see Figure 1).
TCP SYN policing limits acceptance of new SYN packets based on compli-

ance with a token bucket policer. Token buckets have a token rate, which denotes
the average number of requests accepted per second and a bucket size which de-
notes the maximum number of requests accepted at one time. TCP SYN policing
enables service differentiation based on information in the TCP and IP headers
of the incoming connection request (i.e, the source and destination addresses
and port numbers).

user space
kernel space

Apache server

HTTP header−
based control,
kernel stats
and adaptation

HTTP
requests

KHTTPD:

HTTP header
parsing

URLs
cookies

reject
accept

HTTP
requests

TCP SYN policing

requests
connection

update
rates

Fig. 1. Kernel-based architecture
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HTTP header-based connection control is activated when the HTTP header
is received. Using this mechanism a more informed control is possible which
provides the ability to, for example, specify lower access rates for CGI requests
than other requests that are less CPU-intensive. This is done using filter rules,
e.g. checking URL, name and type.

The architecture consists of an unmodified Apache server, the TCP SYN
policer, the in-kernel HTTP GET engine khttpd [24] and a control module that
implements HTTP header-based control, monitors critical resources and adapts
the acceptance rates. Khttpd is used for header parsing only. After parsing the
request header it passes the URLs and cookies to the control module that per-
forms HTTP header-based control. If the request is rejected, khttpd resets the
connection. In our current implementation, this is done by sending a TCP RST
back to the client. If the request is accepted it is added to the Apache web
server’s listen queue. TCP SYN policing drops non-compliant TCP SYNs. This
implies that the client will time-out waiting for the SYN ACK and retry with an
exponentially increasing time-out value. For a more detailed discussion, see [31].

Both mechanisms are located in the kernel which avoids the context switch
to user space for rejected requests. The kernel mechanisms have proven to be
much more efficient and scalable than the same mechanisms implemented in the
web server [31].

2.2 The Dual Admission Control Architecture

Our dual admission control architecture is depicted in Figure 2. In the right part
of the figure we see the web server and some of its critical resources. With each
of these resources, a filter rule and a token bucket policer is associated to avoid
overutilization of the resource, i.e. we use the HTTP header-based connection
control mechanism. For example, a filter rule /cgi-bin and an associated token
bucket policer restrict the acceptance of CPU-intensive requests. On receipt of a
request, the HTTP header is parsed and matched against the filter rules. If there
is a match, the corresponding token bucket is checked for compliance. Compliant
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requests are inserted into the listen queue. We call this part of our admission
control architecture resource-based admission control.

For each of the critical resources, we use a feedback control loop to adapt the
token rate at which we accept requests in order to avoid overutilization of the
request. We do not adapt the bucket size but assume it to be fixed. Note, that
the choice of the policer’s bucket size is a trade-off [31]. When we have a large
bucket size, malicious clients can send a burst to put high load on the machine,
whereas when the bucket size is small, clients must come at regular intervals to
make full use of the token rate. Furthermore, when the bucket size is smaller
than the number of parallel connections in a HTTP 1.0 browser, a client might
not be able to retrieve all the embedded objects in a HTML-page since requests
for these objects usually come in a burst after the client has received the initial
HTML page.

Note that we do not perform resource-based admission control on all requests.
Requests such as those for small static files do not put significant load on one
resource. However, if requested at a sufficiently high rate, these requests can
still cause server overload. Hence, admission control for these requests is needed.
We could insert a default rule and use another token bucket for these requests.
Instead, we have decided to use TCP SYN policing and police all incoming
requests. The main reason for this is TCP SYN policing’s early discard capability.
Also for TCP SYN policing, we adapt the token rate and keep the bucket size
fixed.

One of our design goals for the adaptation mechanisms is to keep TCP SYN
policing inactive while resource-based admission control can protect resources
from being overutilized. When performing resource-based admission control, the
whole HTTP header has been received and can be checked not only for URLs but
also for other application-level information, such as cookies. This gives us the
ability to identify ongoing sessions or premium customers. TCP SYN policing’s
admission control is based on network-level information only and cannot assess
such application-level information. Note that this does not mean that TCP SYN
policing is not worthwhile [31]. Firstly, TCP SYN policing can provide service
differentiation based on network-level attributes. Secondly, TCP SYN policing is
more efficient than HTTP header-based control in the sense that less resources
are consumed when a request is discarded.

Our architecture uses several control loops to adapt the rate of the token
bucket policers: One for each critical resource and one to adapt the SYN policing
rate. A consequence of this approach is that the interaction between the different
control loops might cause oscillations. Fortunately, requests to large static files do
not consume much CPU while CPU-intensive requests usually do not consume
much network bandwidth. Thus, we believe that the control loops for these
resources will not experience any significant interaction effects. Adapting the
TCP SYN policing rate affects the number of CPU-intensive and bandwidth-
intensive requests, which may cause interactions between the control loops. To
avoid this effect, we increase rates quite conservatively. Furthermore, in none
of our experiments we have seen an indication that such an interaction might
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actually occur. One of the reasons for this is that TCP SYN policing becomes
active when the acceptance rate of CPU-intensive requests is very low, i.e. most
of the CPU-intensive requests are discarded.

2.3 The Control Architecture

Our control architecture is depicted in Figure 3. The monitor’s task is to mon-
itor the utilization of each critical resource and pass it to the controller. The
controllers adapt the rates for the admission control mechanisms. We use one
controller for the CPU utilization and one for the bandwidth on the outgoing
network interface. We call the former CPU controller and the latter bandwidth
controller. Both high CPU utilization and dropped packets on the networking
interface can lead to long delays and low throughput. Other resources that could
be controlled are disk I/O bandwidth and memory. In addition, we use a third
controller that is not responsible for a specific resource but performs admission
control on all requests, including those that are not associated with a specific
resource. The latter controller, called SYN controller, controls the rate of the
TCP SYN policer.

Since different resources have different properties, we cannot use the same
controller for each resource. The simplest resource to control is the CPU. The
CPU utilization changes directly with the rate of CPU-intensive requests. This
makes it possible to use a proportional (P) controller. The equation that com-
putes the new rates is called the control law. For our P-controller the control law
is:

ratecgi(t + 1) = ratecgi(t) +KP CPU ∗ e(t) (1)

where e(t) = CPU utilref−CPU util(t), i.e. the difference between the reference
or desired CPU utilization and the current, measured CPU utilization. ratecgi(t)
is the acceptance rate for CGI-scripts at time t. KP CPU is called the proportional
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gain. It determines how fast the system will adapt to changes in the workload.
For higher KP CPU the adaptation is faster but the system is less stable and may
experience oscillations [12].

The other two controllers in our architecture base their control laws on the
length of queues: The SYN controller on the length of the listen queue and the
bandwidth controller on the length of the queue to the network interface. The
significant aspect here is actually the change in the queue length. This derivative
reacts faster than a proportional factor. This fast reaction is more crucial for
these controllers since the delay between the acceptance decision and the actual
occurrence of high resource utilization is higher than when controlling CPU
utilization. For example, the delay between accepting too many large requests
and overflow of the queue to the network interface is non-negligible. One reason
for this is that it takes several round-trip times until the TCP congestion window
is sufficiently large to contribute to overflow of the queue to the network interface.

We decided therefore to use a proportional derivative (PD) controller for
these two controllers. The derivative is approximated by the difference between
the current queue length and the previous one, divided by the number of sam-
ples. The control law for our PD-controllers is:

rate(t+1) = rate(t)+KP Q∗e(t)+KD Q∗(queue len(t)−queue len(t−1)) (2)

where e(t) = queue lenref − queue len(t). The division is embedded in KD Q.
KD Q is the derivative gain.

We imposed some conditions on the equations above. Naive application of
Equation 1 results in an increase in the acceptance rate when the measured value
is below the reference value, i.e. the resource could be utilized more. However,
it is not meaningful to increase the acceptance rate, when the filter rule has less
hits than the specified token rate. For example, if we allow 50 CGI requests/sec,
the current CPU utilization is 60%, the reference value for CPU utilization is
90% and the server has received 30 CGI requests during the last second, it does
not make sense to increase the rate to more than 50 CGI requests/sec. On the
contrary, if we increase the rate in such a situation, we would end up with a
very high acceptance rate after a period of low server load. Hence, when the
measured CPU utilization is lower than the reference value, we have decided to
update the acceptance rate only when the number of hits was at least 90% of
the acceptance rate during the previous sampling period.

Thus, Equation 1 rewrites as:

ratecgi(t + 1) =






ratecgi(t) if (# hits ) < 0.9 ∗ ratecgi(t)∧
CPU util(t) < CPU utilref

ratecgi(t) +KP CPU ∗ e(t) otherwise

We impose a similar condition on the SYN controller and the bandwidth
controller. Both adapt the rates based the queue lengths. The listen queue and
the queue to the network interface usually have a length of zero. This means,
that the length of the queue is below the reference value. For the same reason
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as in the discussion above, if the queue length is below the reference value, we
update the acceptance rate only when the length of the queue has changed.

When performing resource-based admission control, we do not police all re-
quests, even if all requests consume resources at least some CPU. Thus, if the
CPU utilization is already high, i.e. it is above the reference value, we do not
want to increase the amount of work that enters the system since this might
cause server overload. Thus, we increase the TCP SYN policing rate only when
the CPU utilization is below the reference value.

An important decision is the choice of the sampling rate. For ease of imple-
mentation, we started with a sampling rate of one second. To obtain the current
CPU utilization, we can use the so-called jiffies that the Linux kernel provides.
Jiffies measure the time the CPU has spent in user, kernel and idle mode. Since
100 jiffies are equivalent to one second, it is trivial to compute the CPU uti-
lization during the last second. Since even slow web servers can process several
hundred requests per second, a sampling rate of one second might be considered
long. The question is if we do not miss important events such as the listen queue
filling up. This would be the case given that the requests entering the server dur-
ing one second was not limited. However, TCP SYN policing limits the number
of requests entering the system. This bounds the system state changes between
sampling points and allows us to use a sampling rate of one second. This is an
acceptable solution since the experiment in Section 3.3 shows that the control
mechanisms still adapt quickly when we expose the server to sudden high load.

The number of packets queued on an outgoing interface can change quite
rapidly. When the queue is full, packets have to be dropped. The TCP connec-
tions that experience drops back off and thus less packets are inserted into the
queue. We have observed that the queue length has changed from maximum
length to zero and back to maximum length within 20 milliseconds. To avoid
incorporating such an effect when computing new rates, we sample the queue
length to that interface more frequently and compute an average every second.
Using this average, the controller updates the rates every second.

3 Experiments

Our testbed consists of a server and two traffic generators connected via a 100
Mb/sec Ethernet switch. The server machine is a 600 MHz Athlon with 128
MBytes of memory running Linux 2.4. The traffic generators run on a 450 MHz
Athlon and a 200 MHz Pentium Pro. The server is an unmodified Apache web
server, v.1.3.9., with the default configuration, i.e. a maximum of 150 worker
processes. We have extended the length of the web server’s listen queue from
128 to 1024. Banga and Druschel [5] argue that a short listen queue can limit
the throughput of web servers. A longer queue will not have an effect on the
major results.
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Parameter Settings

We have used the following values for the control algorithms: The reference values
for the queues are set to 100 for the listen queue and 35 for the queue to the
network interface which has a length of 100. These values are chosen arbitrarily
but they can be chosen lower without significant impact on the stability since
the queue lengths are mostly zero. Repeating for example the experiment in
Section 3.3 with reference values larger than 20 for the listen queue length leads
to the same results. The reference value for CPU utilization is 90%. We chose this
value since it allows us to be quite close to the maximum utilization while higher
values would more often lead to 100% CPU utilization during one sampling
period.

The proportional gain for the CPU-controller is set to 1/5. We have obtained
this value by experimentation. In our experiments we saw that for gains larger
than 1/4, the CGI acceptance rate oscillates between high and low values, while
it is stable for smaller values. The proportional gain for the SYN and bandwidth
controller is set to 1/16, the derivative gain to 1/4. These values were also
obtained by experimentation. When both gains are larger than 1/2, the system
is not stable, i.e. the change in both the length of the listen queue and the rates
is high when the server experiences high load. When the derivative gain is higher
than the proportional gain, the system reacts fast to changes in the queue lengths
and the queues rarely grow large when starting to grow. We consider these values
to be specific to the server machine we are using1. However, we expect them to
hold for all kinds of web workloads for this server since we use a realistic workload
as described in the next section. The bucket size of the token bucket used for
TCP SYN policing is set to 20 unless explicitly mentioned. The token buckets
for HTTP header-based controls have a bucket size of five.

3.1 Workload

For client load generation we use the sclient traffic generator [5]. Sclient is able
to generate client request rates that exceed the capacity of the web server. This
is done by aborting requests that do not establish a connection to the server in a
specified amount of time. Sclient in its unmodified version requests a single file.
For most of our experiments we have modified sclient to request files according
to a workload that is derived from the surge traffic generator [6]:

1. The size of the files stored on the server follows a heavy tailed distribution.
2. The request size distribution is heavy tailed.
3. The distribution of popularity of files follows Zipf’s Law. Zipf’s Law states

that if the files are ordered from most popular to least popular, then the
number of references to a file tends to be inversely proportional to its rank.

Determining the total number of requests for each file on the server is also done
using surge. We separated the files in two directories on the server. The files larger
1 The values also worked well on another machine we tested, but we do not assume
this is the general case.
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than 50 KBytes were put into one directory (/islarge), the smaller files into
another directory. Harchol-Balter et al. [23] divide static files into priority classes
according to size and assign files larger than 50 KBytes into the group of largest
files. We made 20% of the requests for small files dynamic. The dynamic files
used in our experiments are minor modifications of standard Webstone [15] CGI
files and return a file containing randomly generated characters of the specified
size. The fraction of dynamic requests varies from site to site with some sites
experiencing more than 25% dynamic requests [22,21]. For the acceptance rate of
both CGI-scripts and large files, minimum rates can be specified. The reason for
this is that the processing of CGI-scripts or large files should not be completely
prevented even under heavy load. This minimum rate is set to 10 reqs/sec in our
experiments.

In the next sections we report on the following experiments: In the first ex-
periment we show that the combination of resource-based admission control and
TCP SYN policing works and adapts the rates as expected. In this experiment
the CPU is the major bottleneck. In the following experiment, we expose the
system to a sudden high load and study the behaviour of the adaptation mech-
anisms under such circumstances. In the experiment in Section 3.4, we make
the bandwidth on the interface a bottleneck and show how resource-based ad-
mission control can prevent high response times and low throughput. In the last
experiment, we show that the adaptation mechanisms can cope with more bursty
request arrival distributions.

3.2 CPU Time and Listen Queue Length

In this experiment, we use two controllers: the CPU controller that adapts the
acceptance rate of CGI-scripts and the SYN controller. As mentioned earlier,
the reference for adapting the rate of CGI-scripts is the CPU utilization and
the reference for the TCP SYN policing rate is the listen queue length. About
20% of the requests are for dynamic files (CGI-scripts). In the experiment, we
vary the request rate across runs. The goals of the experiment are: (i) show
that the control algorithms and in particular resource-based admission control
prevent overload and sustain high throughput and low response time even during
high load; (ii) show that TCP SYN policing becomes active when resource-based
admission control alone cannot prevent server overload; (iii) show that the system
achieves high throughput and low response times over a broad range of possible
request rates.

For low rates, we expect that no requests should be discarded. When the
request rate increases, we expect that the CPU becomes overutilized mostly
due to the CPU-intensive CGI-scripts. Hence, for some medium request rates,
policing of CGI-scripts is sufficient and TCP SYN policing will not be active.
However, when the offered load increases beyond a certain level, the processing
capacity of the server will not be able keep up with the request rate even when
discarding most of the CPU-intensive requests. At that point, the listen queue
will build up and thus TCP SYN policing will become active.
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Figure 4 compares the throughput and response times for different request
rates. When the request rate is about 375 reqs/sec, the average response time
increases and the throughput decreases when no controls are applied2. Since our
workload contains CPU-intensive CGI-scripts, the CPU becomes overutilized
and cannot process requests with the same rate as they arrive. Hence, the listen
queue builds up which contributes additionally to the increase of the response
time.

Using resource-based admission control, the acceptance rate of CGI-scripts is
decreased which prevents the CPU from becoming a bottleneck and hence keeps
the response time low. Decreasing the acceptance rate of CGI-scripts is sufficient
until the request rate is about 675 reqs/sec. At this point the CGI acceptance rate
reaches the predefined minimum and cannot be decreased anymore despite the
CPU utilization being greater than the reference value. As the server’s processing
rate is lower than the request rate, the listen queue starts building up. Due to the
increase of the listen queue, the controller computes a lower TCP SYN policing
rate which limits the number of accepted requests. This can be seen in the left-
hand graph where the throughput does not increase anymore for request rates
higher than 800 reqs/sec. The right-hand graph shows that the average response
time increases slightly when TCP SYN policing is active. Part of this increase
is due to the additional waiting time in the listen queue.

We have repeated this experiment with workloads containing 10% dynamic
requests and only static requests. If more requests are discarded using HTTP
header-based control, the onset of TCP SYN policing should happen with higher
request rates. The results in Table 1 show that this is indeed the case. When
the fraction of dynamic requests is 20%, TCP SYN policing sets in at about
675 reqs/sec while the onset for SYN policing is at about 610 reqs/sec when all
requests are for static files.

2 For higher request rates than those shown in the graph the traffic generator runs
out of socket buffers when no controls are applied.
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Table 1. Request rate for which SYN policing becomes active for different fractions
of dynamic requests in the workload

fraction dynamic reqs. (%) req rate for onset of SYN policing (reqs/sec)

20 675
10 640
0 610

In summary, for low request rates, we prevent server overload using resource-
based admission control that avoids over-utilization of the resource bottleneck,
in this case CPU. For high request rates, when resource-based admission control
is not sufficient, TCP SYN policing reduces the overall acceptance rate in order
to keep the throughput high and response times low.

3.3 Exposure to a Very High Load

In this experiment we expose the server to a sudden high load and study the
behaviour of the control algorithms. Such a load exposure could occur during a
flash crowd or a Denial-of-Service (DoS) attack. We start with a relatively low
request rate of 300 reqs/sec. After 50 seconds we increase the offered load to 850
reqs/sec and sustain this high request rate for 20 seconds before we decrease it to
300 reqs/sec again. We set the initial TCP SYN policing rate to 1000 reqs/sec.

Figure 5 shows that the TCP SYN policing rate decreases very quickly when
the request rate is increased at time 50. This rapid decrease is caused by both
parts of the control algorithms in Equation 2. First, since the length of the listen
queue increases quickly, the contribution of the derivative part is high. Second,
the absolute length of the listen queue is at that time higher than the reference
value. Thus, the contribution of the proportional part of Equation 2 is high as
well. The TCP SYN policing rate does not increase to 1000 again after the period
of high load. However, we can see that around time 70, the policing rate increases
to around 340 which is sufficiently high so that no requests need to be discarded
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by the SYN policer when the request rate is 300 reqs/sec. For higher request
rates after the period of high load, the SYN policing rate settles at higher rates.

As expected, the CGI acceptance rate does not decrease as fast. With KP CPU
being 1/5, the decrease of the rate is at most two per sampling point during the
period of high load. Figure 5 also shows that the CGI-acceptance rate is restored
fast after the period of high load. At a request rate of 300 reqs/sec, the CPU
utilization is between 70 and 80%. Thus, the absolute difference to the reference
value is larger than during the period of high load which enables faster increase
than decrease of the CGI acceptance rate. At time 30 in the left-hand graph, we
can see the CGI acceptance rate jump from 74 to 77. The reason for this jump is
that during the last sampling period, the number of hits for the corresponding
filter rule was above 90%, while it was otherwise below 90% until time 50.

3.4 Outgoing Bandwidth

Despite the fact that the workload used in the previous section contains some
very large files, there were very few packet drops on the outgoing network inter-
face. In the experiments in this section we make the bandwidth of the outgoing
interface a bottleneck by requesting a large static file of size 142 KBytes from
another host. The original host still requests the surge-like workload at a rate of
300 reqs/sec. From Figure 4 in Section 3.2, we can see that the server can cope
with the workload from this particular host requested at this rate. The request of
the large static file will cause overutilization of the interface and a proportional
drop of packets to the original host.

Without admission control, we expect that packet drops on the outgoing
interface will cause lower throughput and in particular higher average response
times by causing TCP to back off due to the dropped packets. We therefore
insert a rule that controls the rate at which large files are accepted. Large files
are identified by a common prefix (/islarge). The aim of the experiment is to
show that by adapting the rate with that requests for large files are accepted,
we can avoid packets drops on the outgoing interface.

We generate requests to the large file with a rate of 50 and 80 reqs/sec. The
results are shown in Table 2. As expected the response times for both workloads
become very high when no controls are applied. In our experiments, we observed

Table 2. Outgoing bandwidth

workload
req rate large workload surge workload

large workload metric no controls controls no controls controls

50 reqs/s tput (reqs/sec) 46.8 41.5 270.7 289.2
50 reqs/s response time (ms) 2144 80.5 1394.8 26.9
80 reqs/s tput (reqs/sec) 55.5 45.8 205.2 285.1
80 reqs/s response time (ms) 5400 94 3454.5 29.3
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that the length of the queue to the interface was always around the maximum
value which indicates a lot of packet drops. By discarding a fraction of the
requests for large files our controls keep the response time low by avoiding drops
in the queue to the network interface. Although the throughput for the large
workload is higher when no controls are applied, the sum of the throughput for
both workloads is higher using the controls. Note, that when controls are applied
the sum of the throughput for both workloads is the same for both request rates
(about 331 reqs/sec).

3.5 Burstier Arrival Requests

The sclient program generates web server requests at a constant rate. The result-
ing requests also arrive at a constant rate to the web server. We have modified
the sclient program to generate requests following a Poisson distribution with a
given mean. To verify that our controllers can cope with burstier traffic we have
repeated the experiment in Section 3.2 with a Poisson distribution. In Figure 6
we show the throughput at constant rate and at a Poisson distribution. The
x-axis denotes the mean of the Poisson distribution or the constant request rate
of the standard sclient program while the y-axis denotes the throughput. The
difference between the two graphs is that the bucket size of the policers is 20
in the left-hand graph and five in the right-hand graph. Traffic generated at a
constant rate should be almost independent of the bucket size since it arrives
regularly at the server and a new token should always be available given the
token rate is sufficient.

The left-hand graph shows that we achieve about the same throughput in-
dependent of the distribution of the requests when the policer’s bucket size is
20. If the policer’s bucket size is small as in the right-hand graph, more requests
than necessary are rejected when the distribution of the requests’ arrival times
is burstier. This experiment shows that our adaptation mechanisms should be
able to cope with bursty traffic provided we make a sensible choice of the bucket
size.
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Fig. 6. Comparison between constant request rate and traffic generated according to
Poisson distribution for different bucket sizes (left 20, right 5)
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4 Architectural Extensions

Our current implementation is targeted towards single node servers or the back-
end servers in a web server cluster. We believe that the architecture can easily be
extended to LAN-based web server clusters and enhance sophisticated request
distribution schemes such as HACC [27] and LARD [26]. In LARD and HACC,
the front-end distributes requests based on locality of reference to improve cache
hit rates and thus increase performance. Aron et al. [25] increase the scalabil-
ity of this approach by performing request distribution in the back-ends. In our
extended architecture, the front-end performs resource-based admission control.
The back-end servers monitor the utilization of each critical resource and prop-
agate the values to the front-end. Based on these values, the front-end updates
the rates for the token bucket based policers using the algorithms presented in
Section 2.3. After the original distribution scheme has selected the node that
is to handle the request, compliance with the corresponding token bucket en-
sures that critical resources on the back-ends are not overutilized. This way, we
consider the utilization of individual resources as a distribution criteria which
neither HACC nor LARD do. HACC explicitly combines these performance met-
rics into a single load indicator.

The front-end also computes the rate of the SYN policers for each back-end
based on the listen queue lengths reported by the back-ends. Using these values,
the front-end itself performs SYN policing, using the sum of the acceptance
rates of the back-ends as acceptance rate to the whole cluster. There are two
potential problems: First, the need to propagate the values from the back-ends
to the front-end causes some additional delay. If the evaluation of the system
shows that this is indeed a problem, we should be able to overcome it by setting
more conservative reference values or by increasing the sampling rate. Second,
there is a potential scalability problem caused by the need for n∗c token buckets
on the front-end, where n is the number of back-ends and c the number of critical
resources. However, we believe that this is not a significant problem since a token
bucket can be implemented by reading the clock (which in kernel space is equal
to reading a global variable) and performing some arithmetical operations.

For a geographically distributed web cluster resource utilization of the servers
and the expected resource utilization of the requests can be taken into account
when deciding on where to forward requests.

Our architecture is implemented as a kernel module, but could be deployed in
user space or in a middleware layer. Since our basic architecture is implemented
as a kernel module, we have decided to put the control loops in the kernel module
as well. An advantage of having the control mechanisms in the kernel is that they
are actually executed at the correct sampling rate. But the same mechanisms
could be deployed in user space or in a middleware layer.

Our kernel module is not part of the TCP/IP stack which makes it easy to
port the mechanisms. The only requirements are availability of timing facilities
to ensure correct sampling rates and facilities to monitor resource utilization.

It is also straightforward to extend the architecture to handle persistent con-
nections. Persistent connections represent a challenging problem for web server
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admission control since the HTTP header of the first request does not reveal any
information about the resource consumption of the requests that might follow
on the same connection. A solution to this problem is proposed by Voigt and
Gunningberg [32] where under server overload persistent connections that are
not regarded as important are aborted. The importance is determined by the
cookies. This solution can easily be adapted to fit our architecture. If a resource
is overutilized, we abort non-important persistent connections with a request
matching the filter rule associated with that resource.

It would be interesting to perform studies on user perception. Since the TCP
connection between server and client is already set up when HTTP header-
based control decides on accepting a request, we can inform the client (in this
case the user) by sending a “server busy” notification. TCP SYN policing, on
the other hand, just drops TCP SYNs which with current browsers does not
provide timely feedback to the client. This is another reason for keeping TCP
SYN policing inactive as long as resource-based admission control can prevent
server overload.

The netfilter framework which is part of the Linux kernel contains function-
ality similar to TCP SYN policing. We plan to invest if TCP SYN policing can
be reimplemented using netfilter functionality. Other operating systems such as
FreeBSD contain firewall facilities that could be used to limit the bandwidth to
a web server. It is possible to use such facilities instead of SYN policing. How-
ever, since there is no one-to-one mapping between bandwidth and requests, it
is harder to control the actual amount of requests entering the web server.

The proposed solution of grouping the objects according to resource demand
in the web server’s directory tree, is not intuitive and awkward for the system
administrator. We assume that this process can be automated using scripts.

5 Related Work

Casalicchio and Colajanni [8] have developed a dispatching algorithm for web
clusters that classifies client requests based on their impact on server resources.
By dispatching requests appropriately they ensure that the utilization of the
individual resources is spread evenly among the server back-ends. Our and their
approach have in common that they utilize the expected resource consumption
of web requests, however, for different purposes.

Several others have adopted approaches from control theory for server sys-
tems. Abdelzaher and Lu [2] use a control loop to avoid server overload and
meet individual deadlines for all served requests. They express server utilization
as a function of the served rate and the delivered bandwidth [1]. Their control
task is to keep the server utilization at ln2 in order to guarantee that all dead-
lines can be met. In our approach we aim for higher utilization and throughput.
Furthermore, our approach also handles dynamic requests. In another paper,
Lu et al. [14] use a feedback control approach for guaranteeing relative delays
in web servers. Parekh et al. [11] use a control-theoretic approach to regulate
the maximum number of users accessing a Lotus Notes server. While a focus of
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these papers is to use control theory to avoid the absence of oscillations, Bhoj
et al. [20] in a similar way as we, use a simple controller to ensure that the
occupancy of the priority queue of a web server stays at or below a pre-specified
target value. Reumann et al. [19] use a mechanism similar to TCP SYN policing
to avoid server overload.

Several research efforts have focused on overload control and service differen-
tiation in web servers [3,7,13,9]. WebQoS [7] is a middleware layer that provides
service differentiation and admission control. Since it is deployed in middleware,
it is less efficient compared to kernel-based mechanisms. Cherkasova et al. [9]
present an enhanced web server that provides session-based admission control
to ensure that longer sessions are completed. Their scheme is not adaptive and
rejects new requests when the CPU utilization of the server exceeds a certain
threshold. The focus of cluster reserves [28] is to provide performance isolation
in cluster-based web servers by managing resources, in their work CPU. Their
resource management and distribution strategies do not consider multiple re-
sources.

There are some commercial approaches that deserve mention. Cisco’s Lo-
calDirector [18] enables load balancing across multiple servers with per-flow rate
limits. Inktomi’s Traffic Server C-Class [17] provides system server overload
detection and throttling from traffic spikes and DoS attacks by redistributing
requests to caches. Alteon’s Web OS Traffic Control Software [16] parses HTTP
headers to perform URL-based load balancing and redirect requests based on
content type to servers.

6 Conclusions

We have presented an adaptive server overload protection architecture for web
servers. Using the application-level information in the HTTP header of the
requests combined with knowledge about resource consumption of resource-
intensive requests, the system adapts the rates at which requests are accepted.
The architecture combines the use of such resource-based admission control with
TCP SYN policing. TCP SYN policing first comes into play when the load on
the server is very high since it wastes less resources when rejecting requests. Our
experiments have shown that the acceptance rates are adapted as expected. Our
system sustains high throughput and low response times even under high load.
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