Skip to main content

Soft Matter and Biology

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 601))

Abstract

An introduction to a few “soft condensed matter” system classes and an overview of the aspects related to the application of neutron spin echo (NSE) spectroscopy on these systems is given. The basic universal Rouse and Zimm models for linear polymers often serve as starting point and reference to classify experimental results and form the basis for the investigation of systems containing polymer strands. Influence of architecture, topological constraints, aggregation are addressed and finally NSE related aspects of further systems as microemulsions, glasses and biological samples are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Safran, Adv. in Physics 48, 395 (1999)

    Article  ADS  Google Scholar 

  2. M. Doi, S. Edwards, The Theory of Polymer Dynamics, in International Series of Monographs on Physics, Vol. 73 (Oxford University Press, Oxford, 1994)

    Google Scholar 

  3. G. Suires, in Introduction to the Theory of Thermal Neutron Scattering (Cambridge University Press, Cambridge, London, New York, Melbourne, 1978) pp. 176

    Google Scholar 

  4. P. Rouse, J. Chem. Phys. 21, 1272 (1953)

    Article  ADS  Google Scholar 

  5. P. de Gennes, J. de Physique (France) 42, 735 (1981)

    Article  Google Scholar 

  6. D. Richter, B. Ewen, B. Farago, T. Wagner, Phys. Rev. Lett. 62, 2140 (1989)

    Article  ADS  Google Scholar 

  7. W. Paul, G.D. Smith, D.Y. Yoon, B. Farago, S. Rathgeber, A. Zirkel, L. Willner, D. Richter, Phys. Rev. Lett. 80, 2346 (1998)

    Article  ADS  Google Scholar 

  8. B. Zimm, J. Chem. Phys. 24, 269 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Akcasu, M. Benmouna, C. Han

    Google Scholar 

  10. P. de Gennes, Physics 3, 37 (1967)

    Google Scholar 

  11. E. Dubois-Violette, P. de Gennes, Physics 3, 181 (1967)

    Google Scholar 

  12. L. Nicholson, J. Higgins, J. Hayter

    Google Scholar 

  13. G. Allegra, J.S. Higgins, F. Ganazzoli, E. Lucchelli, S. Brückner, Macromolecules 17, 1253 (1984)

    Article  ADS  Google Scholar 

  14. G. Allegra, F. Ganazzoli, in Advances in Chemical Physics, Vol. 75, ed. by I. Prigogine, S.A. Rice. (Wiley, New York, 1989) pp. 265

    Chapter  Google Scholar 

  15. D. Richter; M. Monkenbusch, J. Allgeier, A. Arbe, J. Colmenero, B. Farago, Y. Cheol Bae, R. Faust, J. Chem. Phys. 111, 6107 (1999)

    Article  ADS  Google Scholar 

  16. M. Adam, D. Lairez, E. Raspaud, B. Farago, Phys. Rev. Lett. 77, 3673 (1996)

    Article  ADS  Google Scholar 

  17. W. Hess, Macromolecules 19, 1395 (1986)

    Article  ADS  Google Scholar 

  18. W. Hess, Macromolecules 20, 2587 (1987)

    Article  ADS  Google Scholar 

  19. W. Hess, Macromolecules 21, 2620 (1988)

    Article  ADS  Google Scholar 

  20. S. Rathgeber, A. Zirkel, L. Willner, D. Richter, A. Brulet, B. Farago, Physica B 234–236, 258 (1997)

    Article  Google Scholar 

  21. D. Richter, B. Farago, L. J. Fetters, J. S. Huang, B. Ewen, C. Lartigue, Phys. Rev. Lett. 64, 1389 (1990)

    Article  ADS  Google Scholar 

  22. P. Schleger, B. Farago, C. Lartigue, A. Kollmar, D. Richter, Phys. Rev. Lett. 81, 124 (1998)

    Article  ADS  Google Scholar 

  23. J. Des Cloiseaux, J. de Physique I (France) 3, 1523 (1993)

    Article  ADS  Google Scholar 

  24. G. Ronca, J. Chem. Phys. 79, 1031 (1983)

    Article  ADS  Google Scholar 

  25. A. Akcasu, Dynamic Light Scattering: the Method and some Applications, in Monographs on the Physics and Chemistry of Materials, Vol. 49, ed. by W. Brown (Clarendon Press, Oxford, 1993) pp. 1

    Google Scholar 

  26. J. Hansen, I. McDonald, Theory of Simple Liquids (Academic Press, New York, 1976)

    Google Scholar 

  27. L. Leibler, Macromolecules 13, 1602 (1980)

    Article  ADS  Google Scholar 

  28. H. Montes, M. Monkenbusch, L. Willner, S. Rathgeber, L. Fetters, D. Richter, J. Chem. Phys. 110, 10188 (1999)

    Article  ADS  Google Scholar 

  29. D. Richter, B. Stuhn, B. Ewen, D. Nerger, Phys. Rev. Lett. 58, 2462 (1987)

    Article  ADS  Google Scholar 

  30. H. Benoit, J. Polymer Sci. 11, 507 (1953)

    Article  ADS  Google Scholar 

  31. W. Burchard, Light Scattering from Polymers, in Advances in Polymer Science, Vol. 48, ed. by H. Chatou (Springer, Berlin, Heidelberg, New York, 1983) pp. 1–124

    Google Scholar 

  32. J. Stellbrink, J. Allgaier, M. Monkenbusch, D. Richter, A. Lang, Likos, M. Watzlawek, H. Löwen, G. Ehlers, P. Schleger, Progr. Coll. & Polymer Sci. 115, 88 (2000)

    Article  Google Scholar 

  33. B. Farago, M. Monkenbusch, D. Richter, J. S. Huang, L.J. Fetters, A.P. Gast, Phys. Rev. Lett. 71, 1015 (1993)

    Article  ADS  Google Scholar 

  34. M. Monkenbusch, D. Schneiders, D. Richter, B. Farago, L. Fetters, J. Huang, Physica B 213–214, 707 (1995)

    Article  Google Scholar 

  35. G. Gompper, M. Schick, Self-Assembling Ampiphilic Systems (Academic Press, London, 1994)

    Google Scholar 

  36. W. Helfrich, Z. Naturforschung A 33A, 305 (1978)

    ADS  Google Scholar 

  37. S. Safran, J. Chem. Phys. 78, 2073 (1983)

    Article  ADS  Google Scholar 

  38. V. Lisy, B. Brutovsky, Phys. Rev. E 61, 4045 (2000)

    Article  ADS  Google Scholar 

  39. J. Huang, S. Milner, B. Farago, D. Richter, Phys. Rev. Lett. 59, 2600 (1987)

    Article  ADS  Google Scholar 

  40. T. Hellweg, D. Langevin, Phys. Rev. E 57, 6825 (1998)

    Article  ADS  Google Scholar 

  41. A. Zilman, R. Granek, Phys. Rev. Lett. 77, 4788 (1996)

    Article  ADS  Google Scholar 

  42. M. Monkenbusch et al., Progr. Coll. & Polymer Sci. 106, 112 (1997)

    Article  Google Scholar 

  43. M. Clerc, Y. Hendrikx, B. Farago, J. de Physique II 7, 1205 (1997)

    Article  ADS  Google Scholar 

  44. M. Köppe, M. Bleuel, R. Gähler, R. Golub, P. Hank, T. Keller, S. Longeville, U. Rauch, J. Wuttke, Physica B 266, 75 (1999)

    Article  ADS  Google Scholar 

  45. A. Tolle, H. Schober, J. Wuttke, F. Fujara, Phys. Rev. E 56, 809 (1997)

    Article  ADS  Google Scholar 

  46. J. C. Phillips, Rep. Progr. in Physics 59, 1133 (1996)

    Article  ADS  Google Scholar 

  47. A. Alegria, J. Colmenero, P. Mari, I. Campbell, Phys. Rev. E 59, 6888 (1999)

    Article  ADS  Google Scholar 

  48. J. Ferry, Viscoleastic Properties of Polymers (John Wiley & Sons, New York, 1970)

    Google Scholar 

  49. D. Richter, A. Arbe, J. Colmenero, M. Monkenbusch, B. Farago, R. Faust, Macromolecules 31, 1133 (1998)

    Article  ADS  Google Scholar 

  50. D. Richter, M. Monkenbusch, A. Arbe, J. Colmenero, B. Farago, R. Faust, J. of Physics: Cond. Matter 11, A297 (1999)

    Article  ADS  Google Scholar 

  51. A. Deriu, Physica B 183, 331 (1993)

    Article  ADS  Google Scholar 

  52. J.-M. Zanotti, M.-C. Bellissent-Funel, J. Parello, Biophys. J. 76, 2390 (1999)

    Article  Google Scholar 

  53. S. Cusack, Chemica Scripta 29A, 103 (1989)

    Google Scholar 

  54. J. Smith et al., Physica B 156–157, 437 (1989)

    Article  Google Scholar 

  55. H. Middendorf, Physica B 182, 415 (1992)

    Article  ADS  Google Scholar 

  56. V. Crupi, D. Majolino, P. Migliardo, U. Wanderlingh, J. Mol. Struc. 480–481, 141 (1999)

    Article  Google Scholar 

  57. J. Perez, J.-M. Zanotti, D. Durand, Biophys. J. 77, 454 (1999)

    Article  Google Scholar 

  58. Y. Alpert, Tentative Use of NSE in Biological Studies, in Neutron Spin Echo, Lecture Notes in Physics, Vol. 128, ed. F. Mezei (Springer Verlag, Berlin, 1980), pp. 87

    Chapter  Google Scholar 

  59. Y. Alpert et al., (1982)

    Google Scholar 

  60. S. Dellerue, A. Petrescu, J.C. Smith, S. Longeville, M.-C. Bellissent-Funel, Physica B 276–278, 514 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monkenbusch, M. (2002). Soft Matter and Biology. In: Mezei, F., Pappas, C., Gutberlet, T. (eds) Neutron Spin Echo Spectroscopy. Lecture Notes in Physics, vol 601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45823-9_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45823-9_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44293-6

  • Online ISBN: 978-3-540-45823-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics