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Abstract. Digital signatures whose security does not rely on any un-
proven computational assumption have recently received considerable
attention. While these unconditionally secure digital signatures provide
a foundation for long term integrity and non-repudiation of data, cur-
rently known schemes generally require a far greater amount of memory
space for the storage of users’ secret information than a traditional digi-
tal signature. The focus of this paper is on methods for reducing memory
requirements of unconditionally secure digital signatures. A major con-
tribution of this paper is to propose two novel unconditionally secure
digital signature schemes that have significantly shortened secret infor-
mation for users. As a specific example, with a typical parameter setting
the required memory size for a user is reduced to approximately 1

10 of
that in previously known schemes. Another contribution of the paper is to
demonstrate an attack on a multireceiver authentication code proposed
by Safavi-Naini and Wang, and present a method to fix the problem of
the code.

1 Introduction

Digital signatures represent one of the most widely used security technologies
for ensuring unforgeability and non-repudiation of digital data. While some data
only require the assurance of integrity for a relatively short period of time, say
up to two years, there are many cases where it is necessary for signed documents
to be regarded as legally valid for a much longer period of time. Some of the
examples of data that require long-term integrity include court records, long-
term leases and contracts.

In August 1999, a team of cryptography researchers from around the world
completed the factorization of an 512-bit RSA composite with the use of the
Number Field Sieve method [3]. With the rapid advancement in the speed of
computers, one can safely predict that factoring even larger composites may
become feasible at some point of time in future. We also note that innovative
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factoring algorithms may emerge, dramatically changing the landscape of public
key cryptosystems whose security hinges on the presumed hardness of certain
number theoretic problems. In yet another significant development, the past few
years have witnessed significant progress in quantum computers. These comput-
ers, if built, will have the capacity to improve profoundly known algorithms for
factoring and solving discrete logarithms [16,1], whereby challenging the long
term security of all digital signature schemes based on number-theoretic prob-
lems.

The above discussions show clearly that there is a need to devise digital
signature schemes that provide assurance of long term integrity. A possible solu-
tion to this problem is digital signature schemes whose security does not rely on
any unproven assumption. The present authors have recently proposed the first
unconditionally secure digital signature schemes (with transferability) [9]. An
interesting and very useful property of these signature schemes is that they ad-
mit transferability, allowing the recipient of a signature to transfer it to another
recipient without fearing that the security of the signature might be compro-
mised. However, these signature schemes do have a disadvantage, namely the
size of a user’s secret information is very large. This disadvantage may pose a
serious problem in practice, especially when a user’s secret information need to
be stored in such devices as smart cards.

A major contribution of this work is to propose two novel unconditionally
secure digital signature schemes that require significantly less amount of memory
for each user’s secret information. As an example, consider an organization that
has 100,000 users. With the new signature schemes, the required memory size
for each user is reduced to approximately 1

10 of that required by previously
known schemes. Another contribution of this paper is to present an attack on a
multireceiver authentication code proposed by Safavi-Naini and Wang, which is
followed by a method to fix that problem. Safavi-Naini and Wang’s multireceiver
authentication code is related to one of our new unconditionally secure digital
signature schemes. More specifically, one of our approaches succeeds in reducing
the required memory size for a user’s secret information by unifying secret data
for both signing and verification.

1.1 Related Work

Unconditionally secure authentication codes. There have been attempts to mod-
ify unconditionally secure authentication codes [7,17] with the aim of enhancing
the codes with added security properties. An obvious approach is to transform an
unconditionally secure authentication code into an unconditionally secure digi-
tal signature. To achieve this, however, one faces two insurmountable technical
hurdles. The first hurdle lies in authentication codes, especially the conventional
Cartesian ones, which do not provide the function of non-repudiation, simply be-
cause a receiver can easily forge a sender’s message and vice versa. The second
hurdle is that the receiver is always designated, which means that a signature
cannot be verified by another party without having the shared key.
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An extension to authentication codes is called, authentication codes with arbi-
tration or A2-codes [18,19,10,8]. These codes involve a trusted third party called
an arbiter. The arbiter help resolve disputes at times when a receiver forges a
sender’s message or the sender claims that the message has been forged by the
receiver. A2-codes have been further improved to have a less trustworthy arbiter
as one of the requirements. These improved codes are called, A3-codes [2,5,8]. A
property common to both codes is that the receiver of an authenticated message
has to be designated. Therefore, in a signature system where the receiver is not
designated, both A2-codes and A3-codes cannot be used as digital signatures.

Another extension made to authentication codes,multireceiver authentication
codes (MRA) [6,13,8], have been extensively studied in the literature. In a MRA
scheme, a broadcast message can be verified by any one of the receivers. Earlier
MRA schemes required the sender himself to be designated. In order to ease the
requirement of the designated sender, several variations of MRA with dynamic
sender or DMRA have been proposed [13,14,15]. Among these schemes, we espe-
cially looked into Safavi-Naini and Wang’s DMRA [13,15] which we thought has
an interesting construction. In their scheme, a user’s secret information for gen-
erating authenticated messages and that for verifying them is the same. Which
means that, their scheme requires significantly less amount of memory size com-
pared to other DMRAs. Further, in one of our new schemes, with this application,
the required memory size for a user’s secret information of our schemes can be
reduced as well.

It is important to note that these schemes make sense only in the case of
broadcasting. If MRA or DMRA is used for point-to-point authentication, then
the sender can easily generate a fraudulent message, which is accepted by the
receiver and not by other participants. The situation is made complex due to a
reason that the same fraudulent message may had been generated by the receiver
himself. A further problem associated to this situation is that, MRA nor DMRA
provide transferability. In particular, if an authenticated message is transferred
from one verifier to another, the second verifier can forge a message that appears
to be perfectly valid and may naturally transfer it to the next verifier. For these
reasons, neither MRA nor DMRA satisfies the non-repudiation requirement of
digital signature.

Unconditionally secure digital signatures. Chaum and Roijakkers [4] originally
made the attempt to construct an unconditionally secure signature scheme using
cryptographic protocols. However, their basic scheme was impractical, as it only
signed a single bit message. Furthermore, their level of security of a signature
decreased as the signature moved from one verifier to another. In practice, it
is important for a signature scheme to have transferability, i.e., its security is
not compromised when a signature is transferred among users. By applying A3-
codes, Johansson [8] proposed an improved version of Chaum-Roijakkers scheme,
but Johansson did not address transferability of signature scheme.

Pfitzmann and Waidner proposed another version of unconditionally secure
signature schemes [11,12]. However, their unconditional security was limited for
signers. Recently, the present authors proposed an unconditionally secure digital
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signature which addresses all known required properties including transferability
[9]. However, that signature scheme (the HSZI-AC00 scheme, for short) requires
a large amount of memory, which could be a problem in certain applications,
e.g. smart card based systems.

1.2 Main Results

In this paper, we first present an attack on Safavi-Naini and Wang’s DMRA
[15]. More specifically, in their scheme, by observing a valid signature of an
honest signer, a coalition of adversaries can make an impersonation attack with
non-negligible probability. We also show a simple method to fix that problem.

Next, we show two novel unconditionally secure digital signature schemes
that admit transferability. Both these schemes significantly reduce the required
memory size for a user’s secret information. In the first one, symmetric construc-
tion, the required memory size for a user’s secret information is significantly re-
duced by unifying secret information for signing and that for verification. How-
ever, the required memory size for a signature is slightly increased compared
to the HSZI-AC00 scheme. The basic idea behind unifying secret information
for signing and verification in the symmetric construction is partially based on
the idea from the fixed version of Safavi-Naini and Wang’s DMRA. In the sec-
ond construction, asymmetric construction, the required memory size is reduced
without increasing the required memory size for a signature. More precisely, this
scheme is optimal in terms of the required memory size for a signature as well
as in the HSZI-AC00 scheme. As an example for 100,000 users with appropriate
security parameter settings, the required memory size for a user is reduced to
1
10 of that required in the previous method.

The organization of the remaining part of this paper is as follows: In Section
2, we give a brief review of Safavi-Naini and Wang’s multireceiver authentication
code, and demonstrate an attack on it. We also show a method to fix the problem.
In Section 3, new unconditionally secure digital signature schemes are presented.
Lastly, Section 4 presents a comparison between the proposed schemes with the
previous method.

2 An Analysis of Safavi-Naini and Wang’s DMRA

In general, DMRA is an authentication code where any entity in a system can
generate and verify an authenticated message. In this section, we give a brief
review of Safavi-Naini and Wang’s multireceiver authentication codes with dy-
namic senders (the SW-DMRA, for short) [13,15]. As already mentioned, in this
scheme, secret information for generating an authenticated message and that
for verifying is the same. Primarily due to this property, the required memory
size for a user’s secret information in the SW-DMRA could be decreased to be
significantly smaller to that of other DMRAs. However, the SW-DMRA is inse-
cure when used as in [15]. In this section, we also demonstrate an attack on the
SW-DMRA, and present a method to fix that problem. This attack is easy to
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perform and indeed, very effective. In this attack, by observing a valid authenti-
cated message, colluders can forge any user’s valid authenticated message with
probability 1.

Uj accepts the broadcasted message if fi(Uj) = fj(Ui).

2.1 Implementation of Safavi-Naini and Wang’s DMRA

In this subsection, the construction of the SW-DMRA is shown in more detail.
This scheme was originally presented in [13] and was then improved and simpli-
fied in [15]. Here, we show the improved version. The model of DMRA follows
[15].

Let Fq be the finite field with q elements and S the set of source states.
We assume S = Fq and that each user’s identity Ui is represented as distinct
number on Fq, and ω is the maximum number of colluders in the system. The
construction of the SW-DMRA is as follows.

Safavi-Naini and Wang’s DMRA [15]

1. Key distribution: The TA chooses uniformly at random two symmetric
polynomials F0(x, y) and F1(x, y) over Fq with two variables x and y of
degree less than ω + 1.1 For each Ui (i = 1, · · · , n), the TA privately sends
a pair of polynomial {F0(x, Ui), F1(x, Ui)} to Ui. This constitutes the secret
information of Ui.

2. Broadcast: If Ui wants to authenticate a source state s ∈ Fq, Ui calculates
the polynomial ai(x) := F0(x, Ui)+sF1(x, Ui) and broadcasts (s, ai(x)) with
his identity to other users.

3. Verification: Uj can verify the authenticity of (s, ai(x)) by first calculating
the polynomial bj(x) := F0(x, Uj) + sF1(x, Uj) and then accepting (s, ai(x))
as authentic and being sent from Ui if bj(Ui) = ai(Uj).

2.2 Performance

As shown in above, in this scheme, Ui’s secret information {F0(x, Ui), F1(x, Ui)}
is utilized for both generating and verifying authenticated message. Namely, for
each user, the whole distributed secret information is used whether he is a sender
or a recipient. Hence, the required memory size for a user’s secret information
can be reduced to significantly small value. More precisely, this scheme is optimal
in terms of the required memory size for a user’s secret information due to lower

1 It is important to note that the meaning of the parameter ω in this paper is different
from that of w used in [15]. The authors of [15] describe “no w−1 subset of users can
perform impersonation and/or substitution attack on any other pair of users” ([15],
page 161, Def. 5.1) and “Then TA randomly chooses two symmetric polynomials of
degree less than w with coefficients in GF (q)” ([15], page 163). Thus, we can see
that ω in this paper is equivalent to w − 1 in [15]. We also note that our definition
of ω is in line with relevant papers by other researchers, including [6,8].
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bound on it [15]. In addition, this scheme is also optimal in terms of the required
memory size for an authenticated message [15]. For the details, see Theorem 5.2
in [15].

Although the authors of [15] claimed that the probability of succeeding for a
collusion of up to ω users in performing all known attacks is at most 1

q , however,
the above scheme is insecure. The details regarding the security of this scheme
is shown in [15]. In the next section, we demonstrate an attack on the above
DMRA.

Here, we further point out the transferability of DMRAs. Generally in DM-
RAs as already mentioned, messages are transmitted over a broadcast channel,
and in this particular situation, transferability is not required. However, for a
digital signature (for point-to-point communication), transferability is a property
that cannot be neglected. That is, a signature system must allow users to pass
signatures among users without compromising the integrity of them. Generally
speaking, DMRAs (and MRAs) do not fulfill this requirement. As an example
to this, we show the vulnerability of the above DMRA where it allows users to
pass authenticated messages among users without a broadcast channel.

Suppose that, Ui0 generates (s, ai0(x)) and sends it to Ui1 . Then, an adver-
sary can modify the authenticated message as (s, a′i0(x)), such that a′i0(Ui1) =
ai0(Ui1) and a′i0(Ui2) �= ai0(Ui2) for a certain user Ui2 . On receiving (s, a′i0(x)),
Ui1 accepts it as valid since a′i0(Ui1) = bi1(Ui0). However, when Ui1 further trans-
fers (s, a′i0(x)) to Ui2 , Ui2 does not accept it since a′i0(Ui2) �= bi2(Ui0), and Ui1
will be suspected to have forged it. We call this type of attack transfer with a
trap following to [9]. For this reason, DMRA (and MRA) cannot be used as a
digital signature.

In the remaining part of this section, we show an attack on the SW-DMRA,
and also present a method to fix that problem. This attack is easy to perform and
indeed, very effective. In this attack, by observing a valid authenticated message,
ω colluders can forge any user’s valid authenticated message with probability 1.

2.3 Attack on Safavi-Naini and Wang’s DMRA

Let W = {U1, · · · , Uω} be the set of the colluders. These colluders can forge any
user’s authenticated message as described. When U0(/∈ W) transmits a valid
authenticated message (s, a0(x)), the colluders interrupt it and use it for forgery
of another user’s authenticated message. On observing (s, a0(x)), the colluders
generate authenticated messages (s, a1(x)), (s, a2(x)), · · · , (s, aω(x)). Letting

Fl(x, y) := (1, x, x2, · · · , xω)Al




1
y
y2

...
yω



, l = 0, 1,
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where Al (l = 0, 1) are (ω+1)×(ω+1) symmetric matrices over Fq, the colluders
now have a matrix D, where

D := (A0 + sA1)




1 1 · · · 1
U0 U1 · · · Uω
U0

2 U1
2 · · · Uω2

...
... · · · ...

U0
ω U1

ω · · · Uωω



.

Then, by using D, A0 + sA1 can be easily obtained as follows:

A0 + sA1 = D




1 1 · · · 1
U0 U1 · · · Uω
U0

2 U1
2 · · · Uω2

...
... · · · ...

U0
ω U1

ω · · · Uωω




−1

.

If the colluders W want to forge an authenticated message of a user Uj , where
Uj /∈ W ∪ {U0}, W calculate

a′j(x) = (1, Uj , U2
j , · · · , Uωj )(A0 + sA1),

and broadcast (s, a′j(x)) as an authenticated message of Uj for the source state
s. Since (s, a′j(x)) is exactly equal to Uj ’s valid authentication message for source
state s, the colluders succeed in impersonation (or entity substitution) for Uj
(with probability 1).

2.4 Method to Fix the Problem

An essential problem in the SW-DMRA is that A0 + sA1 can be calculated
by using both ω colluders’ secret information and an authenticated message
generated by an honest user. In order to avoid calculating A0 + sA1, the rank
of A0 + sA1 must be larger than ω. This implies that the degree of x and y
in F0(x, y) and F1(x, y) must be at least ω + 1. Letting the degree of x and
y in F0(x, y) and F1(x, y) be at least ω + 1, the colluders cannot succeed in
the above attack with non-negligible probability. (See also the footnote that
appeared earlier in this paper regarding the small but subtle difference between
the definition of ω in this paper and that of w in [15].) It should be noted that
both the required memory size for a user’s secret information and that for an
authenticated message are increased by this modification. The authors of [15]
claimed that their original scheme is optimal in terms of memory sizes for a user’s
secret information and an authenticated message, however, the fixed version is
not. Optimal construction of DMRA in terms of memory sizes for both a user’s
secret information and an authenticated message is an interesting open problem.
We further point out that schemes in [14] and [9] are optimal only for memory
sizes for an authenticated message.
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3 Two Novel Methods for Constructing Efficient
and Unconditionally Secure Digital Signatures

In this section, we show two constructions of unconditionally secure digital signa-
ture schemes, which are called symmetric construction and asymmetric construc-
tion, respectively. In these schemes, though the flexibility of parameter settings
is partially lost, the required memory sizes are reduced considerably compared
to the previous method. More precisely, in our proposed schemes, the number of
signatures users can generate is determined to be only one, while in HSZI-AC00
scheme [9], it can be pre-determined flexibly.

3.1 Model

In this subsection, a model of unconditionally secure signature schemes is shown.
This model basically follows as in [9] with a restriction of the number of signa-
tures that users can generate.

We assume that there is a trusted authority, denoted by TA, and n users
U = {U1, U2, · · · , Un}. For each user Ui ∈ U (1 ≤ i ≤ n), for convenience we
use the same symbol Ui to denote the identity of the user. The TA produces
secret information on behalf of a user. Once being given the secret information,
a user can generate and/or verify signatures by using his own secret information,
respectively. A more formal definition is given below:

Definition 1. A scheme Π is an One-Time Identity-based Signature Scheme for
Unconditional Security in a Group (One-Time ISSUSG) if it is constructed as
follows:

1. Notation: Π consists of (TA, U ,M, E ,A,Sig, Ver), where
– TA is a trusted authority,
– U is a finite set of users (to be precise, users’ unique names),
– M is a finite set of possible messages,
– E is a finite set of possible users’ secret information,
– A is a finite set of possible signatures,
– Sig : E ×M −→ A is a signing-algorithm,
– Ver :M×A× E × U −→ {accept, reject} is a verification-algorithm.

2. Key Pair Generation and Distribution by TA: For each user Ui ∈ U ,
the TA chooses a secret information ei ∈ E , and transmits ei to Ui via a
secure channel. After delivering these secret information, the TA may erases
ei from his memory. And each user keeps his secret information secret.

3. Signature Generation: For a message m ∈M, a user Ui generates a signa-
ture α = Sig(ei,m) ∈ A by using the secret information in conjunction with
the signing-algorithm. The pair (m,α) is regarded as a signed message of Ui.
After (m,α) is sent by Ui, no user is allowed to generate another signature.
Namely, in this scheme only one signature is allowed to be generated, but
any user can potentially become a signer.



72 Goichiro Hanaoka et al.

4. Signature Verification: On receiving (m,α) from Ui, a user Uj checks
whether α is valid by using his secret information ej . More precisely, Uj ac-
cepts (m,α) as a valid, signed message from Ui if Ver(m,α, ej , Ui) = accept.

The main difference between the above definition and the previous one in [9]
is that the above model does not allow flexible pre-determination of the number
of signatures per user. Hence, this model is called One-Time ISSUSG.

For a more formalized discussion for the security of a signature scheme in
our model, we define the probability of success of various types of attacks. We
consider three broad types of attacks: impersonation, substitution and transfer
with a trap. In impersonation, adversaries try to forge a user’s signature without
seeing the user’s valid signature. Note that the adversaries are allowed to observe
another user’s signature. In substitution, adversaries try to forge a user’s signa-
ture for a message after seeing the user’s valid signature for another message. In
transfer with a trap, adversaries try to modify a valid signature to be accepted
only by specific verifiers. Description of these attacks are given in [9].

To formally define the probabilities of success in the above three attacks,
some notations must be introduced in ahead. Let W := {W ⊂ U| |W | ≤ ω},
where ω is maximum number of colluders among users. Each element of W
represents a group of possibly colluding users. Let eW = {ek1 , · · · , ekj}, where
W = {Uk1 , · · · , Ukj} (j ≤ ω), be the set of secret information for a W ∈ W.

Definition 2. The success probabilities of impersonation, substitution and trans-
fer with a trap attacks, denoted by PI , PS and PT respectively, are formally
defined as follows:

1) Success probability of impersonation: for W ∈ W and Ui, Uj ∈ U with
Ui, Uj /∈W , we define PI(Ui, Uj ,W ) as

PI(Ui, Uj ,W ) := max
eW

max
1≤k≤n,k �=i

max
(m,α)

max
(m′,α′)

Pr(Uj accepts (m′, α′) as valid from Ui|eW , (m,α)),

where (m,α) is a valid signed message generated by a user Uk (1 ≤ k ≤
n, k �= i) for a message m, and (m,α) runs over M×A. Then, PI is given
as PI := max{Ui,Uj ,W} Pr(Ui, Uj ,W ), where W ∈ W and Ui, Uj ∈ U with
Ui, Uj /∈W .

2) Success probability of substitution: for W ∈ W and Ui, Uj ∈ U with Ui, Uj /∈
W , we define PS(Ui, Uj ,W ) as

PS(Ui, Uj ,W ) := max
eW

max
(m,α)

max
(m′,α′)

Pr(Uj accepts (m′, α′) as valid from Ui|eW , (m,α)),

where (m,α) is a valid signed message generated by Ui for a message m,
and (m′, α′) runs over M × A such that m′ �= m. Then, PS is given as
PS := max{Ui,Uj ,W} Pr(Ui, Uj ,W ), where W ∈ W and Ui, Uj ∈ U with
Ui, Uj /∈W .
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3) Success probability of transfer with a trap: for W ∈ W and Ui, Uj ∈ U with
Uj /∈W we define PT (Ui, Uj ,W ) as

PT (Ui, Uj ,W ) := max
eW

max
(m,α)

max
(m,α′)

Pr(Uj accepts (m,α′) as valid from Ui|eW , (m,α)),

where (m,α) is a valid signed message generated by Ui, and α′ is taken such
that α �= α′. Then, PT is given as PT := max{Ui,Uj ,W} Pr(Ui, Uj ,W ), where
W ∈ W and Ui, Uj ∈ U with Uj /∈W .

The concept of (n, ω, p1, p2)-secure One-Time ISSUSG signature scheme can
now be defined, where both p1 and p2 are security parameters whose meanings
will be made precise in the following definition.

Definition 3. Let Π be a One-Time ISSUSG with n users. Then, Π is
(n, ω, p1, p2)-secure if the following conditions are satisfied: as long as there exist
at most ω colluders, the following inequalities hold:

max{PI , PS} ≤ p1, PT ≤ p2.

3.2 Symmetric Construction

In this subsection, we show an implementation in One-Time ISSUSG, called the
symmetric construction. In this construction, the required memory size for a
user’s secret information is reduced partially based on the fixed version of the
SW-DMRA. Namely, we introduce symmetric functions for unifying the secret
information for signing and for verifying. However, it should be noted that it is
not trivial to implement, since the SW-DMRA does not fulfill the transferability
property. The essential reason behind why the SW-DMRA does not provide
transferability is that, for Ui’s authenticated message (si, ai(x)), any entity can
calculate ai(Uj) and find another function a′i(x) such that a′i(x) �= ai(x) and
a′i(Uj) = ai(Uj). This is hard to solve since Uj must be public. We show a
solution to this problem in the following.

Symmetric Construction

1. Key Generation and Distribution by TA: Let Fq0 be the finite field with
q0 elements such that q0 ≥ n(ω+ 1)q, where q is a security parameter of the
system. We assume that the size of q0 is almost the same as n(ω+1)q. Then,
the TA divides Fq0 into n disjoint subsets U1, · · · ,Un, such that |Ui| = (ω+1)q
for any i, and Ui ∩ Uj = φ if i �= j. Here, Ui (1 ≤ i ≤ n) are made public for
all users. For each user Ui (1 ≤ i ≤ n), the TA picks uniformly at random,
a number ui from Ui, respectively, and chooses uniformly at random two
symmetric polynomials F0(x, y), F1(x, y) over Fq0 with two variables x and
y of degree at most ω + 1. Moreover, we assume a message m is an element
in Fq0 as well. For each user Ui (1 ≤ i ≤ n), the TA computes his secret
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information ei := {F0(x, ui), F1(x, ui), ui}. Then, the TA sends ei to Ui over
a secure channel. Once the secret information has been delivered, there is
now no need for the TA to keep the user’s secret information.

2. Signature Generation: For a message m ∈ Fq0 , Ui generates a signature by
α := {ai,m(x), ui} using his secret information, where ai,m(x) := F0(x, ui)+
mF1(x, ui). Then, (m,α) is sent by Ui with his identity Ui.

3. Signature Verification: On receiving Ui’s signature (m,α), user Uj checks
whether α is valid or not, by the use of his secret information ej . Specifi-
cally, Uj accepts (m,α) as being a valid message-signature pair from Ui if
(F0(x, uj) +mF1(x, uj))|x=ui = ai,m(x)|x=uj and ui ∈ Ui.

Theorem 1. The above scheme results in an (n, ω, 1
q0
, 1q )-secure One-Time IS-

SUSG scheme.

Proof: See Appendix.

Theorem 2. The required memory size in the above construction is given as
follows:

|A| = (ω + 1)qq0ω+2 (size of signature)
|E| = (ω + 1)qq02ω+4 (size of secret information).

Although in this scheme the required memory size of a signature is slightly
increased compared to the HSZI-AC00 scheme [9], that of each user’s secret
information is significantly reduced. Comparison with the previous method is
shown in the following section.

3.3 Asymmetric Construction

In the symmetric construction, though the required memory size of a user’s
secret information has significantly been reduced, the required memory size of
a signature increased compared to the previous method. In this subsection, we
show other methods for reducing the required memory size of a user’s secret
information without increasing the required memory size for a signature. One
of the proposed schemes in this subsection is optimal, especially in terms of
memory size for a signature. Such schemes are called asymmetric constructions
since the secret information for signing and that for verification is different.

Asymmetric Construction

1. Key Pair Generation and Distribution by TA: Let Fq be the finite
field with q elements such that q ≥ n. The TA picks n elements v1, v2, . . . , vn
uniformly at random in Fωq for users U1, U2, . . . , Un respectively, and chooses
two polynomials uniformly at random, G0(x,y1, . . . ,yω) and G1(x,y1, . . . ,yω),
over Fq with ω+1 variables x, y1, · · · , yω, in which the degree of x is at most
ω + 1 and that of every yi is at most 1. Moreover, we assume that each
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user’s identity Ui and a message m are elements of Fq. For each user Ui (1 ≤
i ≤ n), the TA computes Ui’s secret information ei := {G0(Ui, y1, . . . , yω),
G1(Ui, y1, . . . , yω), G0(x, vi), G1(x, vi), vi}. The TA then sends ei to Ui over
a secure channel. Once all the keys are delivered, there is no need for the TA
to keep the user’s secret information.

2. Signature Generation: For a message m ∈ Fq, Ui generates a signature by
α = G0(Ui, y1, . . . , yω) + mG1(Ui, y1, . . . , yω) using G0(Ui, y1, . . . , yω) and
G1(Ui, y1, . . . , yω). Then, (m,α) is sent by Ui with his identity Ui.

3. Signature Verification: On receiving (m,α) from Ui, user Uj checks
whether α is valid by the use of his secret information. More specifically, Uj
accepts (m,α) as being a valid message-signature pair from Ui if (G0(x, vi)+
mG1(x, vi))|x=Ui = α|(y1,...,yω)=(v1,j ,...,vω,j).

Theorem 3. The above scheme results in an (n, ω, ( 2q− 1
q2 ), 1q )-secure One-Time

ISSUSG scheme.

Similarly to Theorem 1, the proof of Theorem 3 can be given. The above
scheme can be slightly modified, resulting in another (n, ω, 1q ,

1
q )-secure One-

Time ISSUSG scheme.

Theorem 4. In the above construction, the following modification also produces
an (n, ω, 1q ,

1
q )-secure One-Time ISSUSG scheme: Instead of choosing randomly,

the TA may choose n elements v1, . . . , vn ∈ Fωq , for users’ secret information,
such that for any ω + 1 vectors

vi1 = (v1,i1 , . . . , vω,i1), . . . , viω+1 = (v1,iω+1 , . . . , vω,iω+1),

the ω + 1 new vectors (1, v1,i1 , . . . , vω,i1), . . . , (1, v1,iω+1 , . . . , vω,iω+1) are linearly
independent.

Though the proposed (n, ω, 1q ,
1
q )-secure One-Time ISSUSG scheme is more

secure than the proposed (n, ω, 2q − 1
q2 ,

1
q )-secure One-Time ISSUSG scheme in

terms of impersonation or substitution, it requires more complicated transactions
for generating each user’s secret information.

Theorem 5. The required memory size in the above constructions is given as
follows:

|A| = qω+1 (size of signature)
|E| = q5ω+6 (size of a user’s secret information).

Corollary 1. The construction proposed in Theorem 4 is optimal in terms of
the memory size of a signature.

The proof follows as from [15]. Since the model of One-Time ISSUSG is regarded
as a restricted version of that of MRA, lower bounds on required memory sizes
for MRA can also be applied to One-Time ISSUSG. The required memory size
for the above construction matches the lower bound on a signature presented in
Theorem 5.2 in [15].
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Table 1. The required memory sizes of each user’s secret information, in the proposed
symmetric construction ((n, ω, 1

q0
, 1
q
)-secure One-Time ISSUSG), asymmetric construc-

tion ((n, ω, 1
q
, 1
q
)-secure One-Time ISSUSG) and the HSZI-AC00 scheme ((n, ω, 1, 1

q
, 1
q
)-

secure ISSUSG [9]), assuming that |q| = 160 bits and ω is determined appropriately
for each n.

n = 1, 000 n = 10, 000 n = 100, 000 n = 1, 000, 000

ω = 500 ω = 2, 000 ω = 10, 000 ω = 50, 000

Symmetric construction 22Kbyte 91Kbyte 464Kbyte 2,393Kbyte
Asymmetric construction 49Kbyte 196Kbyte 977Kbyte 4,883Kbyte
HSZI-AC00 scheme [9] 69Kbyte 508Kbyte 4,493Kbyte 41,993Kbyte

4 Comparison

In this section, we compare the proposed schemes with the previous method
[9]. In the HSZI-AC00 scheme [9], the number of signatures that each user can
generate can be pre-determined in a flexible manner. In order to compare the
proposed One-Time ISSUSG schemes with the HSZI-AC00 scheme, we set the
number of signatures that a user can generate to be one in the previous method.
The following proposition shows the required memory sizes for the HSZI-AC00
scheme for this parameter setting.

Proposition 1 ([9]). Letting the number of users be n and the maximum num-
ber of colluders ω, then the required memory sizes for the HSZI-AC00 scheme
((n, ω, 1, 1q ,

1
q )-secure ISSUSG [9]

2) are:

|A| = qω+1 (size of signature)
|E| = q2n+3ω+2 (size of a user’s secret information),

assuming that each user is allowed to generate at most 1 signature, the proba-
bility of succeeding the impersonation and substitution is at most 1

q and that the
probability of succeeding transfer with a trap is at most 1

q .

As shown in the Table 1, the required memory size of each user’s secret in-
formation is significantly reduced in the proposed schemes. In the symmetric
construction, though the required memory size of a signature increases, that
of each user’s secret information is considerably reduced. As an example, for
100,000 users with appropriate security parameter settings, the required mem-
ory size for a user’s secret information is reduced to 10.3% of that required
in the HSZI-AC00 scheme. In the asymmetric construction, the reduction of

2 It has now been found that (n, ω, ψ, 1
q
, 1
q−1 )-secure ISSUSG in [9] is in fact,

(n, ω, ψ, 1
q
, 1
q
)-secure ISSUSG (see the security definition in [9]). Therefore, we have

(n, ω, 1, 1
q
, 1
q−1 )-secure ISSUSG in [9] to be described as (n, ω, 1, 1

q
, 1
q
)-secure IS-

SUSG. Details on security of these schemes can be obtained from the present authors.
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Table 2. The required memory sizes of a signature, in the proposed symmet-
ric construction ((n, ω, 1

q0
, 1
q
)-secure One-Time ISSUSG), asymmetric construction

((n, ω, 1
q
, 1
q
)-secure One-Time ISSUSG) and the HSZI-AC00 scheme ((n, ω, 1, 1

q
, 1
q
)-

secure ISSUSG [9]), assuming that |q| = 160 bits and ω is determined appropriately
for each n.

n = 1, 000 n = 10, 000 n = 100, 000 n = 1, 000, 000

ω = 500 ω = 2, 000 ω = 10, 000 ω = 50, 000

Symmetric construction 12Kbyte 46Kbyte 233Kbyte 1,197Kbyte
Asymmetric construction 10Kbyte 40Kbyte 196Kbyte 977Kbyte
HSZI-AC00 scheme [9] 10Kbyte 40Kbyte 196Kbyte 977Kbyte

the required memory size of each user’s secret information is less than that in
the symmetric construction. However, the required memory of a signature is less
than that of the symmetric construction. More precisely, the proposed asymmet-
ric construction is optimal in terms of the required memory size of a signature,
reminiscent to the HSZI-AC00 scheme. Table 2 shows the required memory sizes
for a signature in the proposed schemes and that in the HSZI-AC00 scheme.
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Appendix: Proof of Theorem 1

Assume that after seeing a signed message (mi0 , α) published by Ui0 , the col-
luders U1, · · · , Uω want to generate (mi1 , α

′), such that mi1 = mi0 and the
user Ui2 will accept it as a valid signed message of the user Ui1 , i.e. α consists
of {u′i1 , a′i1,mi1 (x)} such that a′i1,mi1 (ui2) = F0(u′i1 , ui2) + mi0F1(u

′
i1
, ui2) and

u′i1 ∈ Ui1 . Letting

Fl(x, y) = (1, x, x2, · · · , xω+1)Al




1
y
y2

...
yω+1



, l = 0, 1,

where Al (l = 0, 1) are (ω+2)×(ω+2) symmetric matrices over Fq0 , the colluders
have a (ω + 2)× (ω + 1) matrix D, where

D := (A0 +mi0A1)




1 1 · · · 1
Ui0 U1 · · · Uω
Ui0

2 U1
2 · · · Uω

2

...
... · · · ...

Ui0
ω+1 U1

ω+1 · · · Uωω+1



.

From Lemma 2.1 in [13], there exist q0 different matrices X such that

D = X




1 1 · · · 1
Ui0 U1 · · · Uω
Ui0

2 U1
2 · · · Uω

2

...
... · · · ...

Ui0
ω+1 U1

ω+1 · · · Uωω+1



.
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This implies that there are q0 different values for A0 +mi0A1.
In order for the colluders to succeed the attack, they need to find a pair of

u′i1 and a′i1,mi1 (x) such that

a′i1,mi1 (ui2) = (1, u′i1 , · · · , u′ω+1
i1

)(A0 +mi0A1)




1
ui2
ui2

2

...
ui2

ω+1




and u′i1 ∈ Ui1 . Letting d be (1, u′i1 , · · · , u′ω+1
i1

)(A0 + mi0A1)




1
ui2
ui2

2

...
ui2

ω+1




, q0 dif-

ferent matrices for A0 +mi0A1 result in q0 different values for d. This indicates
that the probability of succeeding to find a′i1,mi1 (x), such that a′i1,mi1 (ui2) = d,
does not exceed 1

q0
, i.e. PI = 1

q0
. Similarly, we can prove PS ≤ 1

q0
and PT = 1

q .
Here, we briefly show the proof for PT = 1

q . Assume that after seeing a
signed message (mi0 , α) published by Ui0 , the colluders U1, · · · , Uω want to gen-
erate (mi0 , α

′), such that α′ �= α and the user Ui1 will accept it as a valid
signed message of the user Ui0 . Let α be {ui0 , ai0,mi0 (x)} as described in Section
3.2. Since ai0,mi0 (x) is a polynomial with a variable x of degree at most ω + 1,
a′i0,mi0 (x) (a′i0,mi0 (x) �= ai0,mi0 (x)) has at most ω + 1 pairs of {c, a′i0,mi0 (c)},
such that c ∈ Fq0 and a′i0,mi0 (c) = ai0,mi0 (c), where a′i0,mi0 (x) is a poly-
nomial with a variable x of degree at most ω + 1. Hence, the best strategy
for succeeding transfer with a trap is as follows: The colluders choose uni-
formly at random ω + 1 distinct numbers u

(1)
i1
, · · · , u(ω+1)

i1
from Ui1 and gen-

erate a′i0,mi0 (x) (a′i0,mi0 (x) �= ai0,mi0 (x)) such that a′i0,mi0 (u(1)i1 ) = ai0,mi0 (u(1)i1 ),

a′i0,mi0 (u(2)i1 ) = ai0,mi0 (u(2)i1 ), · · · , a′i0,mi0 (u(ω+1)
i1

) = ai0,mi0 (u(ω+1)
i1

). Then, the
colluders send α′ = {ui0 , a′i0,mi0 (x)} to Ui1 . The attack is successful if and only

if ui1 ∈ {u(1)i1 , u
(2)
i1
, · · · , u(ω+1)

i1
}. Hence, PT = ω+1

(ω+1)q = 1
q .
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