Skip to main content

A Locally Conservative Eulerian-Lagrangian Method for Flow in a Porous Medium of a Mixture of Two Components Having Different Densities

  • Conference paper
  • First Online:
Book cover Numerical Treatment of Multiphase Flows in Porous Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 552))

Abstract

The object of this paper is to develop an efficient, conservative, Eulerian-Lagrangian numerical method for the differential system describing miscible displacement of one incompressible fluid by another of different density in a porous medium. The method will be a variant of the “Locally Conservative Eulerian-Lagrangian Method” that has been studied for immiscible displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, C., Douglas, J., Jr., and Pereira, F., From nonconservative to locally conservative Eulerian-Lagrangian methods for miscible displacement in heterogeneous formations, to appear.

    Google Scholar 

  2. Arbogast, T., Chilikapati, A., and Wheeler, M. F., A characteristics-mixed finite element for contaminant transport and miscible displacement, “Computational Methods in Water Resources IX, vol. 1: Numerical Methods in Water Resources,” T. F. Russell et al., eds., Elsevier Applied Science, London New York, 1992, 77–84.

    Google Scholar 

  3. Arbogast, T. and Wheeler, M. F., A characteristics-mixed finite element for advection-dominated transport problems, SIAM J. Numer. Anal. 32 (1995), 404–424.

    Article  MATH  MathSciNet  Google Scholar 

  4. Binning, P. and Celia, M. A., Two-dimensional Eulerian Lagrangian localised adjoint method for the solution of the contaminant transport equation in the saturated and unsaturated zones, “Proceedings, Tenth International Conference on Computational Methods in Water Resources,” A. Peters et al., eds., Kluwer,Dordrecht, 1994, vol. 1, 165–172.

    Google Scholar 

  5. Brezzi, F., Douglas, J., Jr., and Marini, L. D., Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47(1985), 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezzi, F., Douglas, J., Jr., Durán, R., and Fortin, M., Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), 237–250.

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Douglas, J., Jr., Fortin, M., and Marini, L. D., Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O. Modélisation Mathématique et Analyse Numérique 21 (1987), 581–604.

    MathSciNet  Google Scholar 

  8. Celia, M. A., Eulerian-Lagrangian localized adjoint methods for contaminant transport simulations, “Proceedings, Tenth International Conference on Computational Methods in Water Resources,” A. Peters et al., eds., Kluwer, Dordrecht, 1994, vol. 1, 207–216.

    Google Scholar 

  9. Celia, M. A., Russell, T. F., Herrera, I., and Ewing, R. E., An Eulerian-Lagrangian local adjoint method for the advection-diffusion equation, Adv. Water Resour. 13 (1990), 187–206.

    Article  Google Scholar 

  10. Chavent, G. and Jaffré, J., Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  11. Chen, Zhangxin and Douglas, J., Jr., Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989), 135–148.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ciarlet, P. G., The Finite Element Method for Elliptic Equations, North-Holland, Amsterdam, 1978.

    Book  Google Scholar 

  13. Douglas, J., Jr., Simulation of miscible displacement in porous media by a modified method of characteristics procedure, in “Numerical Analysis”, Lecture Notes in Mathematics, volume 912, Springer-Verlag, Berlin, 1982.

    Chapter  Google Scholar 

  14. Douglas, J., Jr., Finite difference methods for two-phase incompressible flow in porous media, SIAM J. Numer. Anal. 20 (1983), 681–696.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Douglas, J., Jr., Numerical methods for the flow of miscible fluids inporous media, in “Numerical Methods in Coupled Systems”, pages 405–439, John Wiley and Sons, Ltd., London, R. W. Lewis, P. Bettess, and E. Hinton, eds., 1984.

    Google Scholar 

  16. Douglas, J., Jr., Superconvergence in the pressure in the simulation of miscible displacement, SIAM J. Numer. Anal. 22 (1985), 962–969.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Douglas, J., Jr., Ewing, R. E., and Wheeler, M. F., The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér. 17 (1983), 17–33.

    MATH  MathSciNet  Google Scholar 

  18. Douglas, J., Jr., Ewing, R. E., and Wheeler, M. F., A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R.A.I.R.O., Anal. Numér. 17 (1983), 249–265.

    MATH  MathSciNet  Google Scholar 

  19. Douglas, J., Jr., Furtado, F., and Pereira, F., On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs, Computational Geosciences 1 (1997), 155–190.

    Article  MATH  MathSciNet  Google Scholar 

  20. Douglas, J., Jr., Hensley, J. L., Wei, Y., Yeh, L., Jaffré, J., Paes Leme, P. J., Ramakrishnam, T. S., and Wilkinson, D. J., A derivation for Darcy’s law for miscible fluids and a revised model for miscible displacement in porous media, in “Mathematical Modeling in Water Resources”, T. F. Russell, R. E. Ewing, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds., vol. 2, 165–178, Computational Mechanics Publications, Elsevier Applied Science, Southhampton, Boston, 1992.

    Google Scholar 

  21. Douglas, J., Jr. and Huang, C.-S., A convergence proof for an application of a locally conservative Eulerian-Lagrangian method, to appear.

    Google Scholar 

  22. Douglas, J., Jr., Huang, C.-S., and Pereira, F., The modified method of characteristics with adjusted advection, to appear in Numerische Mathematik; currently available as Technical Report #298, Center for Applied Mathematics, Purdue University.

    Google Scholar 

  23. Douglas, J., Jr., Huang, C.-S., and Pereira, F., The modified method of characteristics with adjusted advection for an immiscible displacement problem, in “Advances in Computational Mathematics”, Lecture Notes in Pure and Applied Mathematics 202, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1999, 53–73, Z. Chen, Y. Li, C. A. Micchelli, Y. Xu (eds.).

    Google Scholar 

  24. Douglas, J., Jr., Pereira, F., and Yeh, L., A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media, to appear.

    Google Scholar 

  25. Douglas, J., Jr. and Russell, T. F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), 871–885.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Douglas, J., Jr., and Yuan, Y., Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedures, in “Numerical Simulation in Oil Recovery,” The IMA Volumes in Mathematics and its Applications, vol. 11, 119–131, Springer-Verlag, Berlin and New York, 1988, M. F. Wheeler, ed.

    Google Scholar 

  27. Ewing, R. E. and Russell, T. F., Efficient time-stepping methods for miscible displacement problems in porous media, SIAM J. Numer. Anal. 19 (1982), 1–67.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Ewing, R. E., Russell, T. F., and Wheeler, M. F., Simulation of miscible displacement using mixed methods and a modified method of characteristics, in “Proceedings, Seventh SPE Symposium on Reservoir Simulation,” Paper SPE 12241, 71–81, Society of Petroleum Engineers, Dallas, Texas, 1983.

    Google Scholar 

  29. Ewing, R. E., Russell, T. F., and Wheeler, M. F., Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng. 47 (1984), 73–92.

    Article  MATH  MathSciNet  Google Scholar 

  30. Ewing, R. E. and Wheeler, M. F., Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal. 17 (1980), 351–365.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Healy, R. W. and Russell, T. F., A finite-volume Eulerian-Lagrangian localized adjoint method for solving the advection-diffusion equation, Water Resour. Res. 29 (1993), 2399–2413.

    Article  ADS  Google Scholar 

  32. Nedelec, J. C., Mixed finite elements in R3, Numer. Math. 35 (1980), 315–341.

    Article  MATH  MathSciNet  Google Scholar 

  33. Peaceman, D. W., Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Petroleum Engr. J. 6 (1966), 213–216.

    Google Scholar 

  34. Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation, Elsevier, New York, 1977.

    Book  Google Scholar 

  35. Raviart, P. A. and Thomas, J. M., A mixed finite element method for second order elliptic problems, in “Mathematical Aspects of the Finite Element Method”, Lecture Notes in Mathematics, volume 606, 292–315, Springer-Verlag, Berlin, New York, 1977, I. Galligani and E. Magenes, eds.

    Chapter  Google Scholar 

  36. Russell, T. F., An incompletely iterated characteristic finite element method for a miscible displacement problem, Ph.D. thesis, University of Chicago, Chicago, 1980.

    Google Scholar 

  37. Russell, T. F., Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal. 22 (1985), 970–1013.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Wheeler, M. F., A priori L 2-error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Douglas, J., Pereira, F., Yeh, LM. (2000). A Locally Conservative Eulerian-Lagrangian Method for Flow in a Porous Medium of a Mixture of Two Components Having Different Densities. In: Chen, Z., Ewing, R.E., Shi, ZC. (eds) Numerical Treatment of Multiphase Flows in Porous Media. Lecture Notes in Physics, vol 552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45467-5_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45467-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67566-2

  • Online ISBN: 978-3-540-45467-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics