Skip to main content

GA-Based Learning of kDNF sn Boolean Formulas

  • Conference paper
  • First Online:
Evolvable Systems: From Biology to Hardware (ICES 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2210))

Included in the following conference series:

Abstract

The number of samples needed to learn an instance of the representation class kDNF sn of Boolean formulas is predicted using some tolerance parameters by the PAC framework. When the learning machine is a simple genetic algorithm, the initial population is an issue. Using PAC-learning we derive the population size that has at least one individual at some given Hamming distance from the optimum. Then we show that the population does not need to be close to the optimum in order to learn the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anthony and N. Biggs. Computational Learning Theory. Cambridge University Press, Cambridge, England, 1992.

    MATH  Google Scholar 

  2. Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the Vapnik-Chervonenkis Dimension. Journal of the ACM, 36(4):929–965, October 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. Erick Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Genetic Algorithms and Evolutionary Computation. Kluwer Academic Press, 2000.

    Google Scholar 

  4. David E. Goldberg. Sizing Populations for Serial and Parallel Genetic Algorithms. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 70–79, San Mateo, California, 1989. Morgan Kaufmann Publishers.

    Google Scholar 

  5. Arturo Hernández-Aguirre. Sample Complexity and Generalization in Feedforward Neural Networks. PhD thesis, Department of Electrical Engineering and Computer Science, Tulane University, 2000.

    Google Scholar 

  6. Arturo Hernández-Aguirre, Bill Buckles, and Antonio Martínez-Alcántara. The pac population size of a genetic algorithm. In Twelfth International Conference on Tools with Artificial Intelligence, pages 199–202, Vancouver British Columbia, Canada, 13–15 November 2000. IEEE Computer Society.

    Google Scholar 

  7. S.B. Holden and P.J.W. Rayner. Generalization and PAC Learning: Some New Results for the Class of Generalized Single-layer Networks. IEEE Transactions of Neural Networks, 6(2):368–380, March 1995.

    Article  Google Scholar 

  8. Hitoshi Iba, Masaya Iwata, and Tetsuya Higuchi. Machine Learning Approach to Gate-Level Evolvable Hardware. In Tetsuya Higuchi, Masaya Iwata, and Weixin Liu, editors, Evolvable Systems: From Biology to Hardware. First International Conference (ICES’96), pages 327–343, Tsukuba, Japan, October 1996. Springer-Verlag.

    Google Scholar 

  9. Hitoshi Iba, Masaya Iwata, and Tetsuya Higuchi. Gate-Level Evolvable Hardware: Empirical Study and Application. In Dipankar Dasgupta and Zbigniew Michalewicz, editors, Evolutionary Algorithms in Engineering Applications, pages 259–276. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  10. Tatiana G. Kalganova. Evolvable Hardware Design of Combinational Logic Circuits. PhD thesis, Napier University, Edinburgh, Scotland, 2000.

    Google Scholar 

  11. Michael J. Kearns. The Computational Complexity of Machine Learning. MIT Press, Cambridge, Massachusetts, 1990.

    Google Scholar 

  12. Julian F. Miller, Dominic Job, and Vesselin K. Vassilev. Principles in the Evolutionary Design of Digital Circuits—Part I. Genetic Programming and Evolvable Machines, 1(1/2):7–35, April 2000.

    Article  MATH  Google Scholar 

  13. Tom Mitchell. Machine Learning. McGraw-Hill, Boston, Massachusetts, 1997.

    MATH  Google Scholar 

  14. Heinz Mühlenbein and Dirk Schlierkamp-Voosen. PredictiveModels for the Breeder Genetic Algorithm, I: Continuous Parameter Optimization. Evolutionary Computation, 1(1):25–49, Spring 1993.

    Article  Google Scholar 

  15. Heinz Mühlenbein and Dirk Schlierkamp-Voosen. The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA). Evolutionary Computation, 1(4):335–360, Winter 1994.

    Article  Google Scholar 

  16. Giulia Pagallo and David Haussler. Boolean Feature Discovery in Empirical Learning. Machine Learning, 5:71–99, 1990.

    Article  Google Scholar 

  17. Colin R. Reeves. Using Genetic Algorithms with Small Populations. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 92–99, San Mateo, California, July 1993. University of Illinois at Urbana Champaign, Morgan Kaufmann Publishers.

    Google Scholar 

  18. Adrian Thompson, Paul Layzell, and Ricardo Salem Zebulum. Explorations in Design Space: Unconventional Design Through Artificial Evolution. IEEE Transactions on Evolutionary Computation, 3(3):167–196, September 1999.

    Article  Google Scholar 

  19. Leslie G. Valiant. A Theory of the Learnable. Communications of the ACM, 27(11):1134–1142, November 1984.

    Article  MATH  Google Scholar 

  20. Vladimir Naumovich Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  21. Vladimir Naumovich Vapnik. Statistical Learning Theory. Wiley, New York, 1996.

    Google Scholar 

  22. M. Vidyasagar. A theory of learning and generalization: with applications to neural networks and control systems. Springer-Verlag, London, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguirre, A.H., Buckles, B.P., Coello, C.C. (2001). GA-Based Learning of kDNF sn Boolean Formulas. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds) Evolvable Systems: From Biology to Hardware. ICES 2001. Lecture Notes in Computer Science, vol 2210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45443-8_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45443-8_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42671-4

  • Online ISBN: 978-3-540-45443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics