Skip to main content

Universally Quantified Interval Constraints

  • Conference paper
  • First Online:
Book cover Principles and Practice of Constraint Programming – CP 2000 (CP 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1894))

Abstract

Non-linear real constraint systems with universally and/or existentially quantified variables often need be solved in such contexts as control design or sensor planning. To date, these systems are mostly handled by computing a quantifier-free equivalent form by means of Cylindrical Algebraic Decomposition (CAD). However, CAD restricts its input to be conjunctions and disjunctions of polynomial constraints with rational coefficients, while some applications such as camera control involve systems with arbitrary forms where time is the only universally quantified variable. In this paper, the handling of universally quantified variables is first related to the computation of inner-approximation of real relations. Algorithms for solving non-linear real constraint systems with universally quantified variables are then presented along with the theoretical framework on inner-approximation of relations supporting them. These algorithms are based on the computation of outer-approximations of the solution set of the negation of involved constraints. An application to the devising of a declarative modeller for expressing camera motion using a cinematic language is sketched, and results from a prototype are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abrams and P. K. Alien. Computing camera viewpoints in an active robot work-cell. Technical Report IBM Research Report: RC 20987, IBM Research Division, 1997.

    Google Scholar 

  2. B. D. O. Anderson, N. K. Bose, and E. I. Jury. Output feedback stabilization and related problems-solution via decision methods. IEEE Trans. on Automatic Control, AC-20(1), 1975.

    Google Scholar 

  3. J. Armengol, L. Travé-Massuyés, J. Veil, and M. Á. Sainz. Modal interval analysis for error-bounded semiqualitative simulation. In 1r Congrés Català d’lntelligència Artificial, pages 223–231, 1998.

    Google Scholar 

  4. F. Benhamou. Interval constraint logic programming. In A. Podelski, editor, Constraint programming: basics and trends, volume 910 of LNCS, pages 1–21. Springer-Verlag, 1995.

    Google Scholar 

  5. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising hull and box consistency. In Proc. of the 16th Int. Conf. on Logic Programming (ICLP’99), pages 230–244, Las Cruces, USA, 1999. The MIT Press. ISBN 0-262-54104-1.

    Google Scholar 

  6. F. Benhamou, F. Goualard, É. Languénou, and M. Christie. Universally quantified constraint solving: an application to camera control. Research Report 00.5, Institut de Recherche en Informatique de Nantes, March 2000. Available at http://www.sciences.univ-nantes.fr/irin/Vie/RR/indexGB.html.

  7. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP (Intervals) revisited. In Proc. of ILPS’94, pages 124–138. MIT Press, November 1994.

    Google Scholar 

  8. F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer and boolean constraints. JLP, 32(1): 1–24, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. G. deary. Logical arithmetic. Future Generation Computing Systems, 2(2): 125–149, 1987.

    Google Scholar 

  10. H. Collavizza, F. Delobel, and M. Rueher. Extending consistent domains of numeric CSP. In Proc. of the 16th IJCAI, volume 1, pages 406–411, July 1999.

    Google Scholar 

  11. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Proc. of the 2nd GI Conf. Automata Theory and Formal Languages, volume 33 of LNCS, pages 134–183, Kaiserslauten, 1975. Springer.

    Google Scholar 

  12. S. M. Drucker. Intelligent Camera Control for Graphical Environments. PhD thesis, MIT Media Lab, 1994.

    Google Scholar 

  13. H. Hong. Collision problems by an improved CAD-based quantifier elimination algorithm. Technical Report 91-05, RISC-Linz, 1991.

    Google Scholar 

  14. F. Jardillier and E. Langienou. Screen-space constraints for camera movements: the virtual cameraman. In N. Ferreira and M. Gobel, editors, Eurographics’98 proceedings, volume 17, pages 175–186. Blackwell Publishers, 1998.

    Google Scholar 

  15. S. M. Markov. On directed interval arithmetic and its applications. JUCS, 1(7):514–526, 1995.

    MATH  Google Scholar 

  16. K. Meintjes and A. P. Morgan. Chemical equilibrium systems as numerical test problems. ACM TOMS, 16(2):143–151, June 1990.

    Google Scholar 

  17. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Clis, N. J., 1966.

    MATH  Google Scholar 

  18. J.-F. Puget. A C ++ implementation of CLP. In Proc. of SPICIS’94, 1994.

    Google Scholar 

  19. J.-F. Puget and P. Van Hentenryck. A constraint satisfaction approach to a circuit design problem. J. of Global Optimization, 13:75–93, 1998.

    Article  MATH  Google Scholar 

  20. J. Sam. Constraint Consistency Techniques for Continuous Domains. Phd. thesis, École polytechnique fédérale de Lausanne, 1995.

    Google Scholar 

  21. J. Sam-Haroud and B. V. Fallings. Consistency techniques for continuous constraints. Constraints, 1:85–118, 1996.

    Article  MathSciNet  Google Scholar 

  22. S. P. Shary. Algebraic solutions to interval linear equations and their applications. In G. Alefeld and J. Herzberger, editors, Numerical Methods and Error Bounds, proc. of the IMACS-GAMM Int. Symposium on Numerical Methods and Error Bounds, pages 224–233. Akademie Verlag, July 1995.

    Google Scholar 

  23. S. P. Shary. Interval Gauss-Seidel method for generalized solution sets to interval linear systems. In Proc. of MISC’99, pages 51–65, February 1999.

    Google Scholar 

  24. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language for Global Optimization. The MIT Press, 1997.

    Google Scholar 

  25. A. C. Ward, T. Lozano-Bsrez, and W. P. Seering. Extending the constraint propagation of intervals. In Proc. of IJCAI’89, pages 1453–1458, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benhamou, F., Goualard, F. (2000). Universally Quantified Interval Constraints. In: Dechter, R. (eds) Principles and Practice of Constraint Programming – CP 2000. CP 2000. Lecture Notes in Computer Science, vol 1894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45349-0_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45349-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41053-9

  • Online ISBN: 978-3-540-45349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics