
Directly-Executable Earley Parsing

John Aycock and Nigel Horspool

Department of Computer Science,
University of Victoria,

Victoria, B. C., Canada V8W 3P6
{aycock,nigelh}@csc.uvic.ca

Abstract. Deterministic parsing techniques are typically used in favor
of general parsing algorithms for efficiency reasons. However, general
algorithms such as Earley’s method are more powerful and also easier
for developers to use, because no seemingly arbitrary restrictions are
placed on the grammar. We describe how to narrow the performance
gap between general and deterministic parsers, constructing a directly-
executable Earley parser that can reach speeds comparable to deter-
ministic methods even on grammars for commonly-used programming
languages.

1 Introduction

Most parsers in use today are only capable of handling subsets of context-free
grammars: LL, LR, LALR. And with good reason – efficient linear-time algo-
rithms for parsing these subsets are known. In contrast, general parsers which
can handle any context-free grammar are slower due to extra overhead, even for
those cases where the general algorithm runs in linear time [13].

However, general algorithms have some advantages. No “massaging” of a
context-free grammar is required to make it acceptable for use in a general
parser, as is required by more efficient algorithms like the LALR(1) algorithm
used in Yacc [15]. Using a general parser thus reduces programmer development
time, eliminates a source of potential bugs, and lets the grammar reflect the
input language rather than the limitations of a compiler tool.

General algorithms also work for ambiguous grammars, unlike their more
efficient counterparts. Some programming language grammars, such as those for
Pascal, C, and C++, contain areas of ambiguity. For some tasks ambiguous
grammars may be deliberately constructed, such as a grammar which describes
multiple dialects of a language for use in software reengineering [7].

The primary objection to general parsing algorithms, then, is not one of func-
tionality but of speed. For LR parsers, dramatic speed improvements have been
obtained by producing hard-coded, or directly-executable parsers [3,5,14,23,24].
These directly-executable LR parsers implement the parser for a given grammar
as a specialized program, rather than using a typical table-driven approach. In
this paper we extend directly-executable techniques for use in Earley’s general

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 229–243, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

230 J. Aycock and N. Horspool

parsing algorithm, to produce and evaluate what we believe is the first directly-
executable Earley parser. The speed of our parsers is shown to be comparable
to deterministic parsers produced by Bison.

2 Earley Parsing

Earley’s algorithm [9,10] is a general parsing algorithm; it can recognize input
described by any context-free grammar (CFG). (We assume the reader is familiar
with the standard definition and notation of CFGs.) As in [1], uppercase letters
(A, B) represent nonterminals, lowercase letters (a, b) represent terminals, and
α and β are strings of terminal and nonterminal symbols. Also, every CFG G
is augmented by adding a new start rule S′ → S, where S is the original start
symbol of G.

Earley’s algorithm works by building a sequence of Earley sets,1 one initial
Earley set S0, and one Earley set Si for each input symbol xi. An Earley set
contains Earley items, which consist of three parts: a grammar rule; a position
in the grammar rule’s right-hand side indicating how much of that rule has been
seen, denoted by a dot (•); a pointer back to some previous “parent” Earley
set. For instance, the Earley item [A → a • Bb, 12] indicates that the parser has
seen the first symbol of the grammar rule A → aBb, and points back to Earley
set S12. We use the term “core Earley item” to refer to an Earley item less its
parent pointer: A → a • Bb in the above example.

The three steps below are applied to Earley items in Si until no more can be
added; this constructs Si and primes Si+1.

Scanner. If [A → · · · • b · · · , j] is in Si and xi = b, add [A → · · · b • · · · , j] to
Si+1.

Predictor. If [A → · · · • B · · · , j] is in Si, add [B → •α, i] to Si for all rules
B → α in G.

Completer. If a “final” Earley item [A → · · · •, j] is in Si, add [B → · · ·A •
· · · , k] to Si for all Earley items [B → · · · • A · · · , k] in Sj .

An Earley item is added to a Earley set only if it is not already present in
the Earley set. The initial set S0 holds the single Earley item [S′ → •S, 0] prior
to Earley set construction, and the final Earley set must contain [S′ → S•, 0]
upon completion in order for the input string to be accepted. For example, Fig. 1
shows the Earley sets when parsing an input using the expression grammar GE :

S′ → E T → T ∗ F F → n
E → E + T T → T/F F → −F
E → E − T T → F F → +F
E → T F → (E)

1 To avoid confusion later, we use the unfortunately awkward terms “Earley set” and
“Earley item” throughout.

Directly-Executable Earley Parsing 231

n + n
S0 S1 S2 S3

S′ → •E , 0
E → •E + T , 0
E → •E − T , 0
E → •T , 0
T → •T ∗ F , 0
T → •T/F , 0
T → •F , 0
F → •n , 0
F → • − F , 0
F → • + F , 0
F → •(E) , 0

F→ n• ,0
T→ F• ,0
E→ T• ,0
T → T • ∗F , 0
T → T • /F , 0
S′ → E• , 0
E → E • +T , 0
E → E • −T , 0

E → E + •T , 0
T → •T ∗ F , 2
T → •T/F , 2
T → •F , 2
F → •n , 2
F → • − F , 2
F → • + F , 2
F → •(E) , 2

F→ n• ,2
T→ F• ,2
E→ E + T• ,0
T → T • ∗F , 2
T → T • /F , 2
S′ → E• ,0

Fig. 1. Earley sets for the expression grammar GE , parsing the input n + n. Embold-
ened final Earley items are ones which correspond to the input’s derivation.

The Earley algorithm may employ lookahead to reduce the number of Earley
items in each Earley set, but we have found the version of the algorithm without
lookahead suitable for our purposes. We also restrict our attention to input
recognition rather than parsing proper. Construction of parse trees in Earley’s
algorithm is done after recognition is complete, based on information retained
by the recognizer, so this division may be done without loss of generality.

There are a number of observations about Earley’s algorithm which can be
made. By themselves, they seem obvious, yet taken together they shape the
construction of our directly-executable parser.

Observation 1. Additions are only ever made to the current and next Earley
sets, Si and Si+1.

Observation 2. The Completer does not recursively look back through Earley
sets; it only considers a single parent Earley set, Sj .

Observation 3. The Scanner looks at each Earley item exactly once, and this
is the only place where the dot may be moved due to a terminal symbol.

Observation 4. Earley items added by Predictor all have the same parent, i.

3 DEEP: A Directly-Executable Earley Parser

3.1 Basic Organization

The contents of an Earley set depend on the input and are not known until run
time; we cannot realistically precompute one piece of directly-executable code
for every possible Earley set. We can assume, however, that the grammar is
known prior to run time, so we begin by considering how to generate one piece
of directly-executable code per Earley item.

Even within an Earley item, not everything can be precomputed. In particu-
lar, the value of the parent pointer will not be known ahead of time. Given two

232 J. Aycock and N. Horspool

otherwise identical Earley items [A → α • β, j] and [A → α • β, k], the invariant
part is the core Earley item. The code for a directly-executable Earley item,
then, is actually code for the core Earley item; the parent pointer is maintained
as data. A directly-executable Earley item may be represented as the tuple

(code for A → α • β, parent)

the code for which is structured as shown in Fig. 2. Each terminal and non-
terminal symbol is represented by a distinct number; the variable sym can thus
contain either type of symbol. Movement over a terminal symbol is a straightfor-
ward implementation of the Scanner step, but movement over a nonterminal
is complicated by the fact that there are two actions that may take place upon
reaching an Earley item [A → · · · • B · · · , j], depending on the context:

1. If encountered when processing the current Earley set, the Predictor step
should be run.

2. If encountered in a parent Earley set (i.e., the Completer step is running)
then movement over the nonterminal may occur. In this case, sym cannot
be a terminal symbol, so the predicate ISTERMINAL() is used to distinguish
these two cases.

The code for final Earley items calls the code implementing the parent Earley
set, after replacing sym with the nonterminal symbol to move the dot over. By
Observation 2, no stack is required as the call depth is limited to one. Again,
this should only be executed if the current set is being processed, necessitating
the ISTERMINAL().

3.2 Earley Set Representation

An Earley set in the directly-executable representation is conceptually an or-
dered sequence of (code, parent) tuples followed by one of the special tuples:

(end of current Earley set code, −1)
(end of parent Earley set code, −1)

The code at the end of a parent Earley set simply contains a return to match
the call made by a final Earley item. Reaching the end of the current Earley
set is complicated by bookkeeping operations to prepare for processing the next
Earley set. The parent pointer is irrelevant for either of these.

In practice, our DEEP implementation splits the tuples. DEEP’s Earley sets
are in two parts: a list of addresses of code, and a corresponding list of parent
pointers. The two parts are separated in memory by a constant amount, so that
knowing the memory location of one half of a tuple makes it a trivial calculation
to find the other half.

Having a list of code addresses for an Earley set makes it possible to im-
plement the action “goto next Earley item” with direct threaded code [4].
With threaded code, each directly-executable Earley item jumps directly to the
beginning of the code for the next Earley item, rather than first returning to

Directly-Executable Earley Parsing 233

[A → · · · • a · · · , j]
(movement over a
terminal)

⇒ if (sym == a) {
add [A → · · · a • · · · , j] to Si+1

}
goto next Earley item

[A → · · ·•B · · · , j]
(movement over a
nonterminal)

⇒ if (ISTERMINAL(sym)) {
foreach rule B → α {

add [B → • α, i] to Si

}
} else if (sym == B) {

add [A → · · · B • · · · , j] to Si

}
goto next Earley item

[A → · · · •, j]
(final Earley
item)

⇒ if (ISTERMINAL(sym)) {
saved sym = sym
sym = A
call code for Earley set Sj

sym = saved sym
}
goto next Earley item

Fig. 2. Pseudocode for directly-executable Earley items.

a dispatching loop or incurring function call overhead. Not only does threaded
code proffer speed advantages [16], but it can work better with branch predic-
tion hardware on modern CPUs [11]. We implement this in a reasonably portable
fashion using the first-class labels in GNU C.2

How is an Earley item added to an Earley set in this representation? First,
recall that an Earley item is only placed in an Earley set if it does not already
appear there. We will use the term “appending” to denote an Earley item being
placed into an Earley set; “adding” is the process of determining if an Earley item
should be appended to an Earley set. (We discuss adding more in Section 3.3.)
Using this terminology, appending an Earley item to an Earley set is done by
dynamically generating threaded code. We also dynamically modify the threaded
code to exchange one piece of code for another in two instances:

1. When the current Earley set is fully processed, “end of current Earley set”
must be exchanged for “end of parent Earley set.”

2. Observation 3 implies that once the Scanner has looked at an Earley item,
any code looking for terminal symbols is superfluous. By modifying the
threaded code, DEEP skips the superfluous code on subsequent invocations.

Appending leaves DEEP with a thorny problem of memory management. Ob-
servation 1 says that Earley items – threaded code plus separate parent pointers
– can be appended to one of two Earley sets. We also maintain an array whose

2 This is an extension to ANSI C.

234 J. Aycock and N. Horspool

ith entry is a pointer to the code for Earley set Si, for implementation of call,
giving us a total of five distinct, dynamically-growing memory areas.

Instead of complex, high-overhead memory management, we have the oper-
ating system assist us by memory-mapping oversized areas of virtual memory.
This is an efficient operation because the operating system will not allocate the
virtual memory pages until they are used. We can also protect key memory pages
so that an exception is caused if DEEP should exceed its allocated memory, ab-
solving us from performing bounds checking when appending. This arrangement
is shown in Fig. 3, which also demonstrates how the current and next Earley
sets alternate between memory areas.

0

S
0

S
2

S
0

S
2

S
1

S
1

S
3

S
3

th
re

ad
ed

 c
od

e
th

re
ad

ed
 c

od
e

p
ar

en
t

p
oi

nt
er

s
p
ar

en
t

p
oi

nt
er

s

1
2
3

Index to
Earley Sets

Fig. 3. Memory layout for DEEP. S2 and S3 are the current and next Earley sets,
respectively; the shaded areas are protected memory pages.

Directly-Executable Earley Parsing 235

3.3 Adding Earley Items

As mentioned, adding an Earley item to an Earley set entails checking to ensure
that it is not already present. Earley suggested using an array indexed by the
parent pointer, each entry of which would be a list of Earley items to search [10].
Instead, we note that core Earley items may be enumerated, yielding finite,
relatively small numbers.3 A core Earley item’s number may be used to index
into a bitmap to quickly check the presence or absence of any Earley item with
that core.

When two or more Earley items exist with the same core, but different parent
pointers, we construct a radix tree [17] for that core Earley item – a binary
tree whose branches are either zero or one – which keeps track of which parent
pointers have been seen. Radix trees have two nice properties:

1. Insertion and lookup, the only operations required, are simple.
2. The time complexity of radix tree operations during execution is log i, where

i is the number of tokens read, thus growing slowly even with large inputs.

To avoid building a radix tree for a core Earley item until absolutely neces-
sary, we cache the first parent pointer until we encounter a second Earley item
with the same core. An example of adding Earley items is given in Fig. 4.

Bitmap Radix Tree Roots

a) XXXX0X. . . X X X X X

b) XXXX1X. . . X X X X X5

c) XXXX1X. . . X X X X X

5 7

1

1

1

0

1

Fig. 4. Adding Earley items: (a) initial state; (b) after appending Earley item #4,
parent S5; (c) after appending Earley item #4, parent S7. In the radix tree, a circle (•)
indicates an absent entry, and a square (�) indicates an existing entry. “X” denotes a
“don’t care” entry.

3 To be precise, the number of core Earley items is
∑

A→α∈G(|α| + 1).

236 J. Aycock and N. Horspool

3.4 Sets Containing Items which Are Sets Containing Items

Earley parsing has a deep relationship with its contemporary, LR parsing [9].
Here we look at LR(0) parsers – LR parsers with no lookahead. As with all
LR parsers, an LR(0) parser’s recognition is driven by a deterministic finite
automaton (DFA) which is used to decide when the right-hand side of a grammar
rule has been seen. A DFA state corresponds to a set of LR(0) items, and an
LR(0) item is exactly the same as a core Earley item.

How is an LR(0) DFA constructed? Consider a nondeterministic finite au-
tomaton (NFA) for LR(0) parsing, where each NFA state contains exactly one
LR(0) item. A transition is made from [A → · · · • X · · ·] to [A → · · ·X • · · ·] on
the symbol X, and from [A → · · · • B · · ·] to [B → •α] on ε; the start state is
[S′ → •S]. This NFA may then be converted into the LR(0) DFA using standard
methods [1].

The conversion from NFA to DFA yields, as mentioned, DFA states which
are sets of LR(0) items. Within each LR(0) set, the items may be logically
divided into kernel items (the initial item and items where the dot is not at the
beginning) and nonkernel items (all other items) [1]. We explicitly represent this
logical division by splitting each LR(0) DFA state into two states (at most),
leaving us with an almost-deterministic automaton, the LR(0) DFA. Figure 5
shows a partial LR(0) DFA for GE (the remainder is omitted due to space
constraints). In the original LR(0) DFA, states 0 and 1, 2 and 10, 18 and 19, 24
and 25 were merged together.

S′ → •E

0

E → •E + T
E → •E − T
E → •T
T → •T ∗ F
T → •T/F
T → •F
F → •n
F → • − F
F → • + F
F → •(E)

1

E
S′ → E•

2

E → E • +T
E → E • −T

10

F → n•
3

T → F•
8

E → T•
T → T • ∗F
T → T • /F

9

E

n

F

T

E → E + •T

19
T

E → E + T•
25

T → •T ∗ F
T → •T/F
T → •F
F → •n
F → • − F
F → • + F
F → •(E)

18

T T → T • ∗F
T → T • /F

24
n

F

+

+

Fig. 5. Partial LR(0) DFA for GE . Shading denotes start states.

Returning to Earley parsing, the core Earley items in an Earley set may be
represented using one or more states in an LR(0) DFA [22]. The problem with
doing so is that keeping track of which parent pointers and LR(0) items belong

Directly-Executable Earley Parsing 237

together results in a complex, inelegant implementation. However, we realized as
a result of Observation 4 that the Predictor really just corresponds to making
a transition to a “nonkernel” state in the LR(0) DFA. Pursuing this idea, we
represent Earley items in DEEP as the tuples

(code for LR(0) DFA state, parent)

Figure 6 shows the Earley sets from Fig. 1 recoded using the LR(0) DFA states.

n + n
S0 S1 S2 S3

0 , 0
1 , 0

3 , 0
8 , 0
9 , 0

10 , 0
2 , 0

19 , 0
18 , 2

3 , 2
8 , 2

24 , 2
25 , 0
2 , 0

Fig. 6. Earley sets for the expression grammar GE , parsing the input n + n, encoded
using LR(0) DFA states.

Through this new representation, we gain most of the efficiency of using an
LR(0) DFA as the basis of an Earley parser, but with the benefit of a partic-
ularly simple representation and implementation. The prior discussion in this
section regarding DEEP still holds, except the directly-executable code makes
transitions from one LR(0) DFA state to another instead of from one Earley
item to another.

4 Evaluation

We compared DEEP with three different parsers:

1. ACCENT, an Earley parser generator [25].
2. A standard implementation of an Earley parser, by the second author.
3. Bison, the GNU incarnation of Yacc.

All parsers were implemented in C, used the same (flex-generated) scanner, and
were compiled with gcc version 2.7.2.3 using the -O flag. Timings were conducted
on a 200 MHz Pentium with 64 M of RAM running Debian GNU/Linux version
2.1.

Figure 7 shows the performance of all four on GE , the expression grammar
from Sect. 2. As expected, Bison is the fastest, but DEEP is a close second,
markedly faster than the other Earley parsers.

In Fig. 8 the parsers (less Bison) operate on an extremely ambiguous gram-
mar. Again, DEEP is far faster than the other Earley parsers. The performance
curves themselves are typical of the Earley algorithm, whose time complexity is
O(n) for most LR(k) grammars, O(n2) for unambiguous grammars, and O(n3)
in the worst case.[10]

238 J. Aycock and N. Horspool

0

0.5

1

1.5

2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
on

ds
)

Number of Tokens

ACCENT
Earley
DEEP
Bison

Fig. 7. Timings for the expression grammar, GE .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
(s

ec
on

ds
)

Number of Tokens

ACCENT
Earley
DEEP

Fig. 8. Timings for the ambiguous grammar S → SSx|x.

Directly-Executable Earley Parsing 239

5 Improvements

Next, we tried DEEP on the Java 1.1 grammar [12] which consists of 350 gram-
mar rules.4 Suffice it to say that only the extremely patient would be content to
wait while gcc compiled and optimized this monster. To make DEEP practical,
its code size had to be reduced.

Applying Observation 3, code looking for terminal symbols may only be
executed once during the lifetime of a given Earley item. In contrast, an Earley
item’s nonterminal code may be invoked many times. To decrease the code size,
we excised the directly-executable code for terminal symbols, replacing it with a
single table-driven interpreter which interprets the threaded code. Nonterminal
code is still directly-executed, when Completer calls back to a parent Earley
set. This change reduced compile time by over 90%.

Interpretation allowed us to trivially make another improvement, which we
call “Earley set compression.” Often, states in the LR(0) DFA have no transitions
on nonterminal symbols; the corresponding directly-executable code is a no-op
which can consume both time and space. The interpreter looks for such cases
and removes those Earley items, since they cannot contribute to the parse. We
think of Earley set compression as a space optimization, because only a negligible
performance improvement resulted from its implementation.

The version of DEEP using partial interpretation and Earley set compression
is called SHALLOW. Figure 9 compares the performance of SHALLOW and Bi-
son on realistic Java inputs. SHALLOW can be two to five times slower, although
the difference amounts to only fractions of a second – a difference unlikely to be
noticed by end users!

One typical improvement to Earley parsers is the use of lookahead. Earley
suggested that the Completer should employ lookahead, but this was later
shown to be a poor choice [8]. Instead, it was demonstrated that the use of one-
token lookahead by the Predictor yielded the best results [8]. This “prediction
lookahead” avoids placing Earley items into an Earley set that are obvious dead
ends, given the subsequent input. However, the LR(0) DFA naturally clusters
together Predictor’s output. Where prediction lookahead would avoid gener-
ating many Earley items in a standard Earley parser, it would only avoid one
Earley item in SHALLOW if all the predicted dead ends fell within a single
LR(0) DFA state.

We instrumented SHALLOW to track Earley items that were unused, in the
sense that they never caused more Earley items to be added to any Earley set,
and were not final Earley items. Averaging over the Java corpus, 16% of the
Earley items were unused. Of those, prediction lookahead could remove at most
19%; Earley set compression removed 76% of unused Earley items in addition
to pruning away other Earley items. We conjecture that prediction lookahead is
of limited usefulness in an Earley parser using any type of LR automaton.

4 This number refers to grammar rules in Backus-Naur form, obtained after trans-
forming the grammar from [12] in the manner they prescribe.

240 J. Aycock and N. Horspool

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5000 10000 15000 20000 25000 30000

T
im

e
D

iff
er

en
ce

 (
se

co
nd

s)

Number of Tokens

Fig. 9. Difference between SHALLOW and Bison timings for Java 1.1 grammar, pars-
ing 3350 Java source files from JDK 1.2.2 and Java Cup v10j.

6 Related Work

Appropriately, the first attempt at direct execution of an Earley parser was made
by Earley himself [9]. For a subset of the CFGs which his algorithm recognized in
linear time, he proposed an algorithm to produce a hardcoded parser. Assuming
the algorithm worked and scaled to practically-sized grammars – Earley never
implemented it – it would only work for a subset of CFGs, and it possessed
unresolved issues with termination.

The only other reference to a directly-executable “Earley” parser we have
found is Leermakers’ recursive ascent Earley parser [19,20,21]. He provides a
heavily-recursive functional formulation which, like Earley’s proposal, appears
not to have been implemented. Leermakers argues that the directly-executable
LR parsers which influenced our work are really just manifestations of recursive
ascent parsers [20], but he also notes that he uses “recursive ascent Earley parser”
to denote parsers which are not strictly Earley ones [21, page 147]. Indeed,
his algorithm suffers from a problem handling cyclic grammar rules, a problem
not present in Earley’s algorithm (and consequently not present in our Earley
parsers).

Using deterministic parsers as an efficient basis for general parsing algorithms
was suggested by Lang in 1974 [18]. However, none of the applications of this idea
in Earley parsers [22] and Earley-like parsers [2,6,26] have explored the benefits

Directly-Executable Earley Parsing 241

of using an almost-deterministic automaton and exploiting Earley’s ability to
simulate nondeterminism.

7 Future Work

By going from DEEP to SHALLOW, we arrived at a parser suited for practical
use. This came at a cost, however: as shown in Fig. 10, the partially-interpreted
SHALLOW is noticeably slower than the fully-executable DEEP. Even with the
slowdown, SHALLOW’s timings are still comparable to Bison’s. One area of
future work is determining how to retain DEEP’s speed while maintaining the
practicality of SHALLOW.

On the other side of the time/space coin, we have yet to investigate ways to
reduce the size of generated parsers. Comparing the sizes of stripped executables,
SHALLOW parsers for GE and Java were 1.5 and 9.0 times larger, respectively,
than the corresponding Bison parsers.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

T
im

e
(s

ec
on

ds
)

Number of Tokens

SHALLOW
DEEP
Bison

Fig. 10. Performance impact of partial interpretation of GE .

Additionally, we have not yet explored the possibility of using optimizations
based on grammar structure. One such example is elimination of unit rules,5

5 Also called chain rule elimination.

242 J. Aycock and N. Horspool

grammar rules such as A → B with only a single nonterminal on the right-
hand side [13]. Techniques like this have been employed with success in other
directly-executable parsers [14,24].

8 Conclusion

We have shown that directly-executable LR parsing techniques can be extended
for use in general parsing algorithms such as Earley’s algorithm. The result is
a directly-executable Earley parser which is substantially faster than standard
Earley parsers, to the point where it is comparable with LALR(1) parsers pro-
duced by Bison.

Acknowledgments. This work was supported in part by a grant from the
National Science and Engineering Research Council of Canada. Shannon Jaeger
made a number of helpful comments on a draft of this paper.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. M. A. Alonso, D. Cabrero, and M. Vilares. Construction of Efficient Generalized
LR Parsers. Proceedings of the Second International Workshop on Implementing
Automata, 1997, pp. 131–140.

3. D. T. Barnard and J. R. Cordy. SL Parses the LR Languages. Computer Languages
13, 2 (1988), pp. 65–74.

4. J. R. Bell. Threaded Code. CACM 16, 6 (June 1973), pp. 370–372.
5. A. Bhamidipaty and T. A. Proebsting. Very Fast YACC-Compatible Parsers (For

Very Little Effort). Software: Practice and Experience 28, 2 (February 1998), pp.
181–190.

6. S. Billot and B. Lang. The Structure of Shared Forests in Ambiguous Parsing.
Proceedings of the 27th Annual Meeting of the Association for Computational Lin-
guistics, 1989, pp. 143–151.

7. M. van den Brand, A. Sellink, and C. Verhoef. Current Parsing Techniques in Soft-
ware Renovation Considered Harmful. International Workshop on Program Com-
prehension, 1998, pp. 108–117.

8. M. Bouckaert, A. Pirotte, and M. Snelling. Efficient Parsing Algorithms for General
Context-free Parsers. Information Sciences 8, 1975, pp. 1–26.

9. J. Earley. An Efficient Context-Free Parsing Algorithm, Ph.D. thesis, Carnegie-
Mellon University, 1968.

10. J. Earley. An Efficient Context-Free Parsing Algorithm. CACM 13, 2 (February
1970), pp. 94–102.

11. M. A. Ertl and D. Gregg. Hardware Support for Efficient Interpreters: Fast Indirect
Branches (Draft). May, 2000.

12. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996.

13. D. Grune and C. J. H. Jacobs. Parsing Techniques: A Practical Guide. Ellis Hor-
wood, 1990.

Directly-Executable Earley Parsing 243

14. R. N. Horspool and M. Whitney. Even Faster LR Parsing. Software: Practice and
Experience 20, 6 (June 1990), pp. 515–535.

15. S. C. Johnson. Yacc: Yet Another Compiler-Compiler. Unix Programmer’s Manual
(7th edition), volume 2B, 1978.

16. P. Klint. Interpretation Techniques. Software: Practice and Experience 11, 1981,
pp. 963–973.

17. D. E. Knuth. The Art of Computer Programming Volume 3: Sorting and Searching
(2nd edition), Addison-Wesley, 1998.

18. B. Lang. Deterministic Techniques for Efficient Non-Deterministic Parsers. In
Automata, Languages, and Programming (LNCS #14), J. Loeckx, ed., Springer-
Verlag, 1974.

19. R. Leermakers. A recursive ascent Earley parser. Information Processing Letters
41, 1992, pp. 87–91.

20. R. Leermakers. Recursive ascent parsing: from Earley to Marcus. Theoretical Com-
puter Science 104, 1992, pp. 299–312.

21. R. Leermakers. The Functional Treatment of Parsing. Kluwer Academic, 1993.
22. P. McLean and R. N. Horspool. A Faster Earley Parser. Proceedings of the Inter-

national Conference on Compiler Construction, CC ’96, 1996, pp. 281–293.
23. T. J. Pennello. Very Fast LR Parsing. Proceedings of the SIGPLAN ’86 Symposium

on Compiler Construction, SIGPLAN 21, 7 (1986), pp. 145–151.
24. P. Pfahler. Optimizing Directly Executable LR Parsers. Compiler Compilers, Third

International Workshop, CC ’90, 1990, pp. 179–192.
25. F. W. Schröer. The ACCENT Compiler Compiler, Introduction and Reference.

GMD Report 101, German National Research Center for Information Technology,
June 2000.

26. M. Vilares Ferro and B. A. Dion. Efficient Incremental Parsing for Context-Free
Languages. Proceedings of the 5th IEEE International Conference on Computer
Languages, 1994, pp. 241–252.

	Introduction
	Earley Parsing
	DEEP: A Directly-Executable Earley Parser
	Basic Organization
	Earley Set Representation
	Adding Earley Items
	Sets Containing Items which Are Sets Containing Items

	Evaluation
	Improvements
	Related Work
	Future Work
	Conclusion

