Skip to main content

Adaptation of Length in a Nonstationary Environment

  • Conference paper
  • First Online:
  • 1054 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2724))

Abstract

In this paper, we examine the behavior of a variable length GA in a nonstationary problem environment. Results indicate that a variable length GA is better able to adapt to changes than a fixed length GA. Closer examination of the evolutionary dynamics reveals that a variable length GA can in fact take advantage of its variable length representation to exploit good quality building blocks after a change in the problem environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burke, D.S., De Jong, K.A., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting more genetics into genetic algorithms. Evolutionary Computation 6 (1998) 387–410

    Article  Google Scholar 

  2. Langdon, W.B., Poli, R.: Fitness causes bloat. Soft Computing in Engineering Design and Manufacturing (1997) 13–22

    Google Scholar 

  3. Wu, A.S., Jin, S., Schiavone, G., Lin, K.C.: An incremental fitness function for partitioning parallel tasks. In: Proc. Genetic and Evolutionary Computation Conference. (2001)

    Google Scholar 

  4. Smith, S.F.: A learning system based on genetic adaptive algorithms. In: PhD thesis, Dept. Computer Science, University of Pittsburgh. (1980)

    Google Scholar 

  5. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems 3 (1989) 493–530

    MATH  MathSciNet  Google Scholar 

  6. Koza, J.R.: Genetic programming. MIT Press (1992)

    Google Scholar 

  7. Harvey, I.: Species adaptation genetic algorithms: A basis for a continuing saga. In: Proceedings of the First European Conference on Artificial Life. (1992) 346–354

    Google Scholar 

  8. Soule, T., Foster, J.A., Dickinson, J.: Code growth in genetic programming. In: Proc. Genetic Programming (GP). (1996) 400–405

    Google Scholar 

  9. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on populations in genetic programming. Evolutionary Computation 6 (1998) 293–309

    Article  Google Scholar 

  10. Branke, J.: Evolutionary approaches to dynamic optimization problems-updated survey. In: Genetic and Evolutionary Computation Conference Workshop Program. (2001) 27–30

    Google Scholar 

  11. Grefenstette, J.J.: Genetic algorihtms for changing environments. Parallel Problem Solving from Nature (PPSN) 2 (1992) 137–144

    Google Scholar 

  12. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Technical Report AIC-90-001, Naval Research Laboratory (1990)

    Google Scholar 

  13. Grefenstette, J.J.: Evolvability in dynamic fitness lanscapes: a genetic algorithm approach. In: Congress on Evolutionary Computation. (1999) 2031–2038

    Google Scholar 

  14. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of the thermodynamical genetic algorithm. In: PPSN. (1996) 513–522

    Google Scholar 

  15. Kita, H., Yabumoto, Y., Mori, N., Nishikawa, Y.: Multi-objective optimization by means of the thermodynamical genetic algorithm. In: PPSN IV. (1996) 504–512

    Google Scholar 

  16. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Intl. Conf. on Genetic Algorithms (ICGA). (1987) 59–68

    Google Scholar 

  17. Ng, K.P., Wang, K.C.: A new diploid scheme and dominance change mechanism for non-stationary function optimization. In: Proc. 6th ICGA. (1995) 159–166

    Google Scholar 

  18. Smith, R.E.: Diploidy genetic algorithms for search in time varying environments. In: Annual Southeast Regional Conference of the ACM. (1987) 175–179

    Google Scholar 

  19. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: CEC. (1999) 1875–1882

    Google Scholar 

  20. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)

    Google Scholar 

  21. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function optimization. In: Proc. ICGA. (1989) 42–50

    Google Scholar 

  22. Liles, W., De Jong, K.: The usefulness of tag bits in changing envrionments. In: CEC. (1999) 2054–2060

    Google Scholar 

  23. El-Rewini, H., Lewis, T.G., Ali, H.H.: Task scheduling in parallel and distributed systems. Prentice Hall (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, H., Wu, A.S., Lin, KC., Schiavone, G. (2003). Adaptation of Length in a Nonstationary Environment. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45110-2_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45110-2_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40603-7

  • Online ISBN: 978-3-540-45110-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics