Skip to main content

Avalanches and Damage Clusters in Fracture Processes

  • Conference paper
  • First Online:
Coherent Structures in Complex Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 567))

Abstract

By simulating two-dimensional models of electric breakdown and fracture it is possible to characterize the rupture of disordered materials subject to an increasing external stress. We provide a review of numerical and analytical results concerning the scaling properties of avalanche events prior the macroscopic breakdown of the material. The obtained results suggest a scenario that describes fractures as a firstorder phase transition in the proximity of a spinodal-like instability. Finally, we discuss the properties of the avalanche branching ratio in the present context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. K. Bardhan, B. K. Chakrabarti and A. Hansen (eds.), Non-linearity and breakdown in soft condensed matter, (Springer Verlag, Berlin, 1994). B. K. Chakrabarti and L. G. Benguigui, Statistical physics of fracture and breakdown in disordered systems (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  2. A. Garcimartín, A. Guarino, L. Bellon and S. Ciliberto, Phys. Rev. Lett. 79, 3202 (1997); A. Guarino, A. Garcimartín and S. Ciliberto, Eur. Phys. J. B 6, 13 (1998).

    Article  ADS  Google Scholar 

  3. C. Maes, A. Van Moffaert, H. Frederix and H. Strauven, Phys. Rev. B 57, 4987 (1998).

    ADS  Google Scholar 

  4. A. Petri, G. Paparo, A. Vespignani, A. Alippi and M. Costantini, Phys. Rev. Lett. 73, 3423 (1994).

    Article  ADS  Google Scholar 

  5. G. Cannelli, R. Cantelli and F. Cordero, Phys. Rev. Lett. 70, 3923 (1993).

    Article  ADS  Google Scholar 

  6. J. Weiss and. J.-R. Grasso, J. Phys. Chem. B 101, 6113 (1997).

    Google Scholar 

  7. P. Diodati, F. Marchesoni and S. Piazza, Phys. Rev. Lett. 67, 2239 (1991).

    Article  ADS  Google Scholar 

  8. S. Zapperi, P. Ray, H. E. Stanley and A. Vespignani, Phys. Rev. Lett. 78, 1408 (1997); Phys. Rev. E 59, 5049 (1999)

    Article  ADS  Google Scholar 

  9. S. Zapperi, A. Vespignani and H. E. Stanley, Nature 388, 658 (1997).

    Article  ADS  Google Scholar 

  10. L. de Arcangelis, S. Redner and H. J. Herrmann, J. Phys. Lett. (Paris) 46, L585 (1985).

    Google Scholar 

  11. P. Duxbury, P. D. Beale and P. L. Leath, Phys. Rev. Lett. 57, 1052 (1986).

    Article  ADS  Google Scholar 

  12. L. de Arcangelis and H.J. Herrmann, Phys. Rev. B 39, 2678 (1989).

    ADS  Google Scholar 

  13. B. Kahng, G. G. Batrouni, S. Redner, L. de Arcangelis and H. J. Herrmann, Phys. Rev. B 37, 7625 (1988).

    ADS  Google Scholar 

  14. P. Ray and G. Date, Physica A 229, 26 (1996).

    ADS  Google Scholar 

  15. K.-T. Leung and J. V. Andersen, Europhys. Lett. 38 589 (1997); K.-T. Leung, J. V. Andersen and D. Sornette, Phys. Rev. Lett. 80, 1916 (1998).

    Article  ADS  Google Scholar 

  16. C. Unger and W. Klein, Phys. Rev. B 29, 2698 (1984); ibidem 31, 6127 (1985). For a review see L. Monette, Int. J. of Mod. Phys B 8, 1417 (1994).

    ADS  Google Scholar 

  17. A. Hansen and P. C. Hemmer, Phys. Lett. A 184, 394 (1994).

    ADS  Google Scholar 

  18. P. C. Hemmer and A. Hansen, J. Appl. Mech. 59, 909 (1992); M. Kloster, A. Hansen and P. C. Hemmer Phys. Rev E 56, 2615 (1997).

    Article  MATH  Google Scholar 

  19. S. Kirkpatrik, Rev. Mod. Phys. 45, 574 (1973).

    Article  ADS  Google Scholar 

  20. R. L. B. Selinger, Z.-G. Wang, W. M. Gelbart and A. Ben-Saul, Phys. Rev. A 43, 4396 (1991); Z.-G. Wang, U. Landman, R. L. B. Selinger and W. M. Gelbart, Phys. Rev. B 44 378 (1991).

    ADS  Google Scholar 

  21. M. Acharaya and B. K. Chakrabarti, Phys. Rev. E 53, 140 (1996); M. Acharaya, P. Ray and B. K. Chakrabarti, Physica A 224, 287 (1996).

    ADS  Google Scholar 

  22. D. Heerman, W. Klein and D. Stauffer, Phys. Rev. Lett. 49 1262 (1982); T. Ray and W. Klein, J. Stat. Phys. 61, 891 (1990).

    Article  ADS  Google Scholar 

  23. G. Caldarelli, C. Castellano and A. Petri, Physica A 270, 15 (1999).

    ADS  Google Scholar 

  24. Y. Moreno, J. B. Gomez, A. F. Pacheco, Phys. Rev. Lett. 85, 2865 (2000)

    Article  ADS  Google Scholar 

  25. T. E. Harris, The Theory of Branching Processes (Dover, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A. (2001). Avalanches and Damage Clusters in Fracture Processes. In: Reguera, D., Rubí, J.M., Bonilla, L.L. (eds) Coherent Structures in Complex Systems. Lecture Notes in Physics, vol 567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44698-2_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44698-2_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41705-7

  • Online ISBN: 978-3-540-44698-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics