Skip to main content
Book cover

Informatics pp 328–340Cite as

Computer Vision: Past and Future

  • Chapter
  • First Online:
  • 871 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2000))

Abstract

“What does it mean to see? The plain man’s answer (and Aristotle’s too) would be to know what is where by looking.” These introductory words in the seminal book of David Marr [54] capture the essence of what researchers in computer vision have been trying to make computers do for almost half a century. In this paper we will outline the development of the field, emphasising the last ten years, and the discuss what the challenges in the field are.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. Intl. Jour. of Computer Vision, 1(4):333–356, January 1988.

    Google Scholar 

  2. M. A. Arbib. From vision to action via distributed computation. In S.-I. Amari and N. Kasabov, editors, Brain-like computing and intelligent information systems, pages 315–347. Springer Verlag, Singapore, 1997.

    Google Scholar 

  3. R. Bajcsy. Active perception vs. passive perception. In Proc. 3rd Workshop on Computer Vision: Representation and Control, pages 55–59, Washington, DC., October 1985. IEEE Press.

    Google Scholar 

  4. D. Ballard and A. Ozcandarli. Eye fixation and early vision: kinetic depth. In Proc. 2nd ICCV, pages 524–531, Washington, DC., 1988. IEEE Press.

    Google Scholar 

  5. D. H. Ballard. Animate vision. Artificial Intelligence, 48(1):57–86, February 1991.

    Article  MathSciNet  Google Scholar 

  6. Y. Bar-Shalom and T. Fortmann. Tracking and Data Association. Academic Press, New York, NY., 1987.

    Google Scholar 

  7. I. Biederman. Recognition by Components: A theory of human image understanding. Psychological Review, 94:115–147, 1987.

    Article  Google Scholar 

  8. T. O. Binford. Inferring surfaces from images. Artificial Intelligence, 17:205–244, 1981.

    Article  Google Scholar 

  9. A. Blake and M. Isard. Active Contours. Springer Verlag, Berlin, 1998.

    Google Scholar 

  10. T. Brodsky, C. Fermüller, and Y. Aloimonos. Structure from Motion: Beyond the Epipolar Constraint. Intl. Jour. of Computer Vision, 37(3):231–258, 2000.

    Article  MATH  Google Scholar 

  11. P. Burt. Smart sensing within a pyramid vision machine. IEEE Proceedings, 76(8):1006–1015, August 1988.

    Article  Google Scholar 

  12. R. Cipolla and A. Blake. Motion planning using image divergence and deformation. In A. Blake and A. Yuille, editors, Active Vision, pages 189–202. MIT Press, Cambridge, MA., 1992.

    Google Scholar 

  13. J. J. Clark and N. Ferrier. Modal control of an attentive vision system. In Proc. 2nd ICCV, pages 514–523. IEEE CS Press, December 1988.

    Google Scholar 

  14. D. Coombs and C.M. Brown. Real-time binocular smooth-pursuit. Intl. Jour of Computer Vision, 11(2):147–165, October 1993.

    Article  Google Scholar 

  15. T.F. Cootes and C.J. Taylor. A mixture model for representing shape variation. Image and Vision Computing, 17(8):567–573, June 1999.

    Article  Google Scholar 

  16. J. L. Crowley and H.I. Christensen. Vision as Process. ESPRIT BR Series. Springer Verlag, Heidelberg, December 1995.

    Google Scholar 

  17. R. Deriche and O. Faugeras. Pde’s in image processing and computer vision. (in French), 13(6), 1996.

    Google Scholar 

  18. E. Dickmanns. Vehicles capable of dynamic vision: a new breed of technical beings? Artificial Intelligence, 103(1-2):49–76, August 1998.

    Article  MATH  Google Scholar 

  19. R. O. Duda and P. E. Hart. Pattern Cclassification and Scene Analysis. Wiley-Interscience, New York, NY., 1973.

    Google Scholar 

  20. S. Edelman and S. Duvdevani-Bar. A model of visual recognition and categorization. Proc. of the Royal Society of London, B-352:1191–1202, 1997.

    Article  Google Scholar 

  21. S. Edelman. Representation and Recognition in Vision. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  22. M.J. Farah. Visual Agnosia. MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  23. O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  24. O.D. Faugeras and R. Keriven. Variational-principles, surface evolution, pdes, level set methods, and the stereo problem. Image Processing, 7(3):336–344, March 1998.

    Article  MATH  MathSciNet  Google Scholar 

  25. O. Faugeras. What can be seen in the three dimensions with an uncalibrated stereo rig? In G. Sandini, editor, Proc. 2nd ECCV, volume 588 of LNCS, pages 563–578, Berlin, May 1992. Springer Verlag.

    Google Scholar 

  26. J. Fiser, I. Biederman, and E.E. Cooper. To what extent can matching algorithms based on direct outputs of spatial filters account for human object recognition? Spatial Vision, 10(3):237–272, 1996.

    Article  Google Scholar 

  27. D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jepson. Design and use of linear models for image motion analysis. Intl. Jour. of Computer Vision, 36(3):171–193, 2000.

    Article  Google Scholar 

  28. W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-13(9):891–906, September 1991.

    Article  Google Scholar 

  29. D. Gabor. Information theory in electron microscopy. Laboratory Investigation, 14:801–807, 1965.

    Google Scholar 

  30. J. Gårding and T. Lindeberg. Direct computation of shape cues using scaleadapted spatial derivative operators. Intl. Jour. of Computer Vision, 17(2):163–191, February 1996.

    Article  Google Scholar 

  31. J. Gibson. The Perception of the Visual World. Houghton Mifflin, Boston USA, 1950.

    Google Scholar 

  32. N. Gordon, D. Salmond, and A. Smith. A novel approach to nonlinear/nongaussian bayesian state estimation. IEE Proc. F, 140(2):107–113, 1993.

    Google Scholar 

  33. U. Grenander. A unified approach to pattern analysis, volume 10. Advanced is Computers, 1970.

    Google Scholar 

  34. U. Grenander, Y. Chow, and D. Keenan. HANDS-A Pattern Theoretical Study of Biological Shapes. Springer Verlag, New York, NY, 1991.

    Google Scholar 

  35. S. Grossberg and G.A. Carpenter. Neural networks for vision and image processing. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  36. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK., 2000.

    MATH  Google Scholar 

  37. R. I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In G. Sandini, editor, Proc. 2nd ECCV, volume 588 of LNCS, pages 579–587, Berlin, May 1992. Springer Verlag.

    Google Scholar 

  38. B. K. P. Horn. Understanding image intensities. Artificial Intelligence, 8(2):201–231, 1977.

    Article  MATH  Google Scholar 

  39. M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density. In B. Buxton and R. Cipolla, editors, ECCV-96, LNCS, pages I:343–356, Berlin, June 1996. Springer Verlag.

    Chapter  Google Scholar 

  40. D.G. Jones and J. Malik. Determining three-dimensional shape from orientation and spatial frequency disparities. In Proc. 2nd ECCV, LNCS, pages 661–669, Berlin, 1992. Springer Verlag.

    Google Scholar 

  41. B. Julesz. Visual pattern discrimination. IRE Transaction on Information Theory, IT-8:84–92, February 1962.

    Google Scholar 

  42. J. J. Koenderick and A. J. van Doorn. Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta, 22(9):773–791, 1975.

    Google Scholar 

  43. J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  44. J. J. Koenderink and A. J. vanDoorn. Affine structure from motion. Jour of Optical Society of America, 8(2):377–385, 1991.

    Google Scholar 

  45. J.J. Koenderink and A.J. van Doorn. Representation of local geometry in the visual system. Biological Cybernetics, 55:367–375, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Lades, C.C. Vorbruggen, J. Buhmann, J. Langeand C. von der Malsburg, R.P. Wurtz, and W. Konen. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Computers, 42(3):300–311, March 1993.

    Article  Google Scholar 

  47. Y. Lamdan, J.T. Swartz, and H.J. Wolfson. Object recognition by affine invariant matching. In IEEE Conf. on Pattern Recognition and Computer Vision, pages 335–344, Ann Arbor, MI, June 1988.

    Google Scholar 

  48. R. L. Lillestrand. Techniques for change detection. IEEE Trans. on Computers, 21(7):654–659, 1972.

    Article  Google Scholar 

  49. T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, Dordrecht, NL, 1994.

    Google Scholar 

  50. H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133–135, September 1981.

    Google Scholar 

  51. C. B. Madsen and H. I. Christensen. A viewpoint planning strategy for determining true angles on polyhedral objects by camera alignment. IEEE Trans. PAMI, 19(2):158–163, February 1997.

    Google Scholar 

  52. S. Mallat. A wavelet tour of signal processing. Academic Press, New York, NY., 1997.

    Google Scholar 

  53. D. Marr. Early processing of visual information. Proceedings of the Royal Society of London, B-275:483–524, 1976.

    Article  Google Scholar 

  54. D. Marr. Vision. W.H. Freeman and Company, New York, N.Y., 1980.

    Google Scholar 

  55. D. W. Murray, K.J. Bradshaw, P.F. McLauchlan, I.D. Reid, and P.M. Sharkey. Driving saccade to pursuit using image motion. Intl. Jour. of Computer Vision, 16(3):205–228, November 1995.

    Article  Google Scholar 

  56. A. Naeve and J.-O. Eklundh. On projective geometry and the recovery of 3-D structure. In Proc. 1st ICCV, pages 128–135, Washington, DC, June 1987. IEEE Press.

    Google Scholar 

  57. H.-H. Nagel. Image sequence evaluation: 30y ears and still going strong. In Proc. 15th ICPR, pages 148–158, Washington, DC, September 2000. IEEE Press.

    Google Scholar 

  58. S. K. Nayar, H. Murase, and S. A. Nene. Parametric appearance representation. In S.K. Nayar and T. Poggio, editors, Early Visual Learning. Oxford University Press, 1996.

    Google Scholar 

  59. L. Nielsen and G. Sparr. Perspective area-invariants. In J.O. Eklundh, editor, Image Analysis, Proc. SCIA-87, volume 1, pages 209–216, Stockholm, Sweden, June 1987.

    Google Scholar 

  60. K. Pahlavan, T. Uhlin, and J.-O. Eklundh. Dynamic fixation and active perception. Intl. Jour. of Computer Vision, 17(2):113–136, February 1996.

    Article  Google Scholar 

  61. K. Pahlavan, T. Uhlin, and J.O. Eklundh. Integrating primary ocular processes. Image and Vision Computing, 10:645–662, December 1992.

    Google Scholar 

  62. P. Perona and J. Malik. Scale space and edge diffusion using anisotropic diffusion. IEEE Trans. PAMI, 12(7):629–639, July 1990.

    Google Scholar 

  63. T. Poggio. A theory of how the brain might work. In Cold Spring Harbor Symposia on Qualitative Biology, pages 899–910. LV, 1990.

    Google Scholar 

  64. T. Poggio and S. Edelman. A neural network that learns to recognize three dimensional objects. Nature, 343:263–266, 1990.

    Article  Google Scholar 

  65. L. G. Roberts. Machine Perception of 3-D Solids. PhD thesis, MIT, Cambridge, MA, May 1963.

    Google Scholar 

  66. L. G. Roberts. Machine perception of three-dimensional solids. In J. P. Tippett et al., editor, Optical and Electrooptical Information Processing, pages 159–197. MIT Press, Cambridge, MA, 1965.

    Google Scholar 

  67. A. Rosenfeld, R. Hummel, and S. W. Zucker. Scene labeling by relaxation operations. IEEE Trans. SMC, 6:420–422, 1976.

    MATH  MathSciNet  Google Scholar 

  68. J. A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cambridge University Press, 1996.

    Google Scholar 

  69. S. C. Shapiro. Artificial intelligence. In S.C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages 54–57. John Wiley and Sons, Inc., New York, NY., 1992.

    Google Scholar 

  70. J. Sporring, M. Nielsen, L.M.J. Florack, and P. Johansen, editors. Gaussian Scale-Space Theory. Kluwer, 1997.

    Google Scholar 

  71. P. Stefanovic. Relative orientation-a new approach. ITC-Journal, 3:417–448, 1973.

    Google Scholar 

  72. K. Sugihara. An algebraic approach to shape-from-image problems. Artificial Intelligence, 23(1):59–95, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  73. C. Tomasi and T. Kanade. The factorization method for the recovery of shape and motion from image streams. Intl. Jour. of Computer Vision, 9:2:137–154, 1992.

    Article  Google Scholar 

  74. E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision. Prentice Hall Inc., London, U.K., 1998.

    Google Scholar 

  75. R.Y. Tsai and T.S. Huang. Estimating 3-D Motion Parameters of a Rigid Planar patch I. IEEE Trans on ASSP., 29(12):1147–1152, December 1981.

    Article  Google Scholar 

  76. J. T. Tsotsos. On relative complexity of active vs. passive visual search. Intl. Jour. of Computer Vision, 7(2):127–141, 1992.

    Article  Google Scholar 

  77. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

    Article  Google Scholar 

  78. V. Vapnik. The nature of statistical learning theory. Springer Verlag, Berlin, 1995.

    MATH  Google Scholar 

  79. A. M. Waxman and K. Wohn. Contour evolution, neighborhood deformation and global image flow: Planar surfaces in motion. Intl. Jour. of Robotics Research, 4:95–108, 1985.

    Article  Google Scholar 

  80. J. Weber and J. Malik. Robust computation of optical flow in a multi-scale differential framework. Intl. Jour. of Computer Vision, 14(1), 1995.

    Google Scholar 

  81. J. Weickert, S. Ishikawa, and A. Imiya. linear scale-space has first been proposed in japan. Journal of Mathematical Imaging and Vision, 10(3):237–252, May 1999.

    Article  MATH  MathSciNet  Google Scholar 

  82. I. Weiss. Geometric invariants and object recognition. Intl. Jour. of Computer Vision, 10(3):207–231, 1993.

    Article  Google Scholar 

  83. H.R. Wilson. Pschophysical evidence for spatial channels. In O. Braddick and A.C. Sleigh, editors, Physical and Biological Processing of Images, New York, N.Y., 1983. Springer Verlag.

    Google Scholar 

  84. A. Witkin. Scale-space filtering. In 8th Int. Joint Conf. Artificial Intelligence, pages 1019–1022, Karlsruhe, 1983.

    Google Scholar 

  85. S. Zeki. A vision of the brain. Oxford: Blackwell Scienti.c, Oxford, UK, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eklundh, JO., Christensen, H.I. (2001). Computer Vision: Past and Future. In: Wilhelm, R. (eds) Informatics. Lecture Notes in Computer Science, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44577-3_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-44577-3_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41635-7

  • Online ISBN: 978-3-540-44577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics