Skip to main content

The Ö-Calculus: A Language for Distributed Control of Reconfigurable Embedded Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2623))

Abstract

The Ö-calculus extends Milner’s π-calculus by adding active environments which flow continuously over time. This allows us to extend hybrid automata to specify systems of physical agents which can reconfigure themselves. We prove a theorem stating that processes (weakly) bisimilar in the process-algebraic sense, when placed in the same active environment, control it in the same way.

Research supported by US NSF Grant 0233960.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional refinement for hierarchical hybrid systems. In Maria Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, editors, Hybrid Systems, Computation, and Control, pages 33–48. Springer-Verlag, 2001. Volume 2034 of Lecture Notes in Computer Science.

    Chapter  Google Scholar 

  2. R. Alur and. T. A. Henzinger. Reactive modules. Formal methods in System Design, 15:7–48, 1999.

    Article  Google Scholar 

  3. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential processes. J. Assoc. Comput. Mach., 31(3):560–599, 1984.

    MATH  MathSciNet  Google Scholar 

  4. Luis Caires and Luca Cardelli. A spatial logic for concurrency (part i). In Proceedings, Theoretical Aspects of Computer Software; 4th International Symposium, Sendai, Japan, 2001. To appear in I & C special issue on TACS’01.

    Google Scholar 

  5. A. Deshpande, A. Gollu, and L. Semenzato. The shift programming language and run-time system for dynamic networks of hybrid automata. Technical report, California PATH Research Report UCB-ITS-PRR-97-7, 1997.

    Google Scholar 

  6. T. A. Henzinger. The theory of hybrid automata. In Proc. 11th Annual Symposium on Logic in Computer Science, pages 278–292, 1996.

    Google Scholar 

  7. T. A. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for hierarchical hybrid systems. In Maria Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, editors, Hybrid Systems, Computation, and Control, pages 275–290. Springer-Verlag, 2001. Volume 2034 of Lecture Notes in Computer Science.

    Chapter  Google Scholar 

  8. E. Klavins. Automatic compilation of concurrent hybrid factories from product assembly specifications. In Hybrid Systems: Computation and Control, LNCS 1790, pages 174–187, Pittsburgh, PA, 2000. Springer-Verlag.

    Chapter  Google Scholar 

  9. Eric Klavins and Daniel Koditschek. A formalism for the composition of loosely coupled robot behaviors. Technical report, University of Michigan CSE Tech Report CSE-TR-12-99, 1999.

    Google Scholar 

  10. Daniel E. Koditschek and Elon Rimon. Robot navigation functions on manifolds with boundary. Advances in Applied Mathematics, 11:412–442, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  11. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid i/o automata revisited. In Maria Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control. Fourth International Workshop, pages 403–417. Springer-Verlag, 2001. Volume 2034 of Lecture Notes in Computer Science.

    Chapter  Google Scholar 

  12. Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings of 6th Annual Symposium on Principles of Distributed Computing, pages 137–151, 1987.

    Google Scholar 

  13. Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, 1999.

    Google Scholar 

  14. W. C. Rounds and Hosung Song. The ö-calculus-a hybrid extension of the π-calculus to embedded systems. Technical report, University of Michigan EECSCSE Tech Report CSE-TR-458-02, 2002.

    Google Scholar 

  15. Steve Schneider. Concurrent and real-time systems: the CSP approach. Wiley, 2000.

    Google Scholar 

  16. Roberto Segala. A process-algebraic view of i-o automata. Technical report, MIT Tech Memo MIT/LCS/TR557, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rounds, W.C., Song, H. (2003). The Ö-Calculus: A Language for Distributed Control of Reconfigurable Embedded Systems. In: Maler, O., Pnueli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2003. Lecture Notes in Computer Science, vol 2623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36580-X_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-36580-X_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00913-9

  • Online ISBN: 978-3-540-36580-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics