Skip to main content

Molecular Markers in Genetics and Breeding: Improvement of Alfalfa (Medicago sativa L.)

  • Chapter
Molecular Marker Systems in Plant Breeding and Crop Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 55))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert KB, Tanksley SD (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507

    Article  PubMed  Google Scholar 

  • Anderson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138

    Article  PubMed  Google Scholar 

  • Barcaccia G, Albertini E, Rosellini D, Tavoletti S, Veronessi F (2000) Inheritance and mapping of 2n-egg production in diploid alfalfa. Genome 43:528–537

    Article  PubMed  Google Scholar 

  • Barnes DK Hanson CH (1971) Recurrent selection for bacterial wilt resistance in Alfalfa. Crop Sci 11:545–546

    Google Scholar 

  • Barnes DK, Bingham ET, Murphy RP, Hunt OJ, Beard DF, Skrdla WH, Teuber LR (1977) Alfalfa germplasm in the United States: genetic variability, use and maintenance. USDA-ARS Tech Bull 1571 USDA-ARS, Hyattsville, MD

    Google Scholar 

  • Beer SC, Siripoonwiwat W, O'Donoughue LS, Souza E, Matthews D, Sorrells ME (1997) Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages? J Agric Geno 3 [on line]. URL: http://www.cabi-publishing.org/gateways/jag/index.html

    Google Scholar 

  • Bingham ET, McCoy TJ (1979) Cultivated alfalfa at the diploid level: origin, reproductive stability and yield of seed and forage. Crop Sci 19:97–100

    Google Scholar 

  • Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34:823–829

    Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1993) A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theor Appl Genet 86:481–491

    Article  Google Scholar 

  • Bray RA, Irwin JAG (1989) Recurrent selection for resistance to Stemphylium versicarium within the lucerne cultivars Trifecta and Sequel. Aust J Exp Agric 29:189–192

    Google Scholar 

  • Brouwer DJ, Osborn TC (1997a) Identification of the RFLP markers linked to the unifolate leaf, cauliflower head mutation in alfalfa. J Hered 88:150–152

    Google Scholar 

  • Brouwer DJ, Osborn TC (1997b) Molecular marker analysis of the approach to homozygosity by selfing diploid alfalfa. Crop Sci 37:1326–1330

    Google Scholar 

  • Brouwer DJ, Osborn TC (1999) A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet 99:1194–1200

    Google Scholar 

  • Brouwer DJ, Duke SH, Osborn TC (2000) Mapping genetic factors associated with winter hardiness, fall growth, and freezing injury in tetraploid alfalfa. Crop Sci 40:1387–1396

    Google Scholar 

  • Brummer EC (1998) Molecular and cellular technologies in forage improvement: an overview. In: Brummer EC, Hill NS, Roberts CA (eds) Molecular and cellular technologies for forage improvement. CSSA special publication number 26, Madison, WI, pp 1–10

    Google Scholar 

  • Brummer EC, Kochert G, Bouton JH (1991) RFLP variation in diploid and tetraploid alfalfa. Theor Appl Genet 83:89–96

    Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1995) Analysis of annual Medicago species using RAPD markers. Genome 38:362–367

    PubMed  Google Scholar 

  • Bush LV, Smith E (1981) Susceptibility of Ontario-grown alfalfa cultivars and certain Medicago species to Verticillium albo-atrum. Can J Plan Path 3:169–172

    Google Scholar 

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ, O'Toole JC, Huang N, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    Article  Google Scholar 

  • Csanadi G, Szecsi J, Kalo P, Kiss P, Endre G, Kondorosi A, Kondorosi E, Kiss GB (1994) ENOD12, an early nodulin gene, is not required for nodule formation and efficient nitrogen fixation in alfalfa. Plant Cell 6:201–206

    Article  PubMed  Google Scholar 

  • Dobrenz AK, Robinson DL, Smith SE, Stone JE (1988) Registration of AZ large leaflet nondormant alfalfa germplasm. Crop Sci 28:1034

    Google Scholar 

  • Dobrenz AK, Smith SE, Poteet D, Miller WD (1993) Carbohydrates in alfalfa seed developed for salt tolerance during germination. Agron J 85:834–836

    Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    PubMed  Google Scholar 

  • Doerge RW, Craig BA (2000) Model selection for quantitative trait locus analysis in polyploids. Proc Natl Acad Sci USA 97:7951–7956

    PubMed  Google Scholar 

  • Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ (1994) Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37:61–71

    PubMed  Google Scholar 

  • Elden TC, Elgin JH (1987) Recurrent seedling and individual plant selection for potato leafhopper (Homoptera: Cicadellidae) resistance in alfalfa. J Econ Entomol 80:690–695

    Google Scholar 

  • Ewens WJ, Spielman RS (1995) The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet 63:1886–1897

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  Google Scholar 

  • Galitski T, Saldanha AJ, Styles C, Lander E, Fink GR (1999) Ploidy regulation of gene expression. Science 285:251–254

    Article  PubMed  Google Scholar 

  • Grube RC, Blauth JR, Arnedo AMS, Caranta C, Jahn MK (2000a) Identification and comparative mapping of a dominant polyvirus resistance gene cluster in Capsicum. Theor Appl Genet 101:852–859

    Article  Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000b) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887

    PubMed  Google Scholar 

  • Hansen JL, Viands DR (1989) Response from phenotypic recurrent selection for root regeneration after taproot severing in alfalfa. Crop Sci 29:1177–1181

    Google Scholar 

  • Heisey RF, Murphy RP (1985) Phenotypic recurrent selection for resistance to Phytophthora root rot in two diploid alfalfa populations. Crop Sci 25:693–694

    Google Scholar 

  • Jahn MK, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J (2000) Genetic mapping of the Tsw locus for resistance to tomato spotted wilt virus in Capsicum and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microbe Int 13:673–682

    Google Scholar 

  • Jannink JL, Walsh B (2002) Association mapping in plant populations. In: Kang MS (ed) Quantitative genetics, genomics, and plant breeding. CABI, New York, pp 59–68

    Google Scholar 

  • Jiang CX, Wright RJ, EL-Zik KM, Patterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424

    Article  PubMed  Google Scholar 

  • Kalo P, Endre G, Zimanyi L, Csanadi G, Kiss GB (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet 100:641–657

    Article  Google Scholar 

  • Kennard WC, Phillips RL, Porter RA, Grombacher AW (2000) A comparative map of wild rice (Zizania palustris L. 2n=2x=30). Theor Appl Genet 101:677–684

    Article  Google Scholar 

  • Kidwell KK, Austin DF, Osborn TC (1994) RFLP evaluation of nine Medicago accessions representing the original germplasm sources for the north American alfalfa cultivars. Crop Sci 34:230–236

    Google Scholar 

  • Kidwell KK, Hartweck LM, Yandell BS, Crump PM, Brummer JE, Moutray J, Osborn TC (1999) Forage yields of alfalfa populations derived from parents selected on the basis of molecular marker diversity. Crop Sci 39:223–227

    Google Scholar 

  • Kiss GB, Csanadi G, Kalman K, Kalo P, Okresz L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and molecular markers. Mol Gen Genet 238:129–137

    PubMed  Google Scholar 

  • Knapp EE, Teuber LR (1994) Selection progress for ease of floret tripping in alfalfa. Crop Sci 34:323–326

    Google Scholar 

  • Knowler WC, Williams RC, Pettitt DJ, Steinberg AG (1988) Gm 3, 5, 13, 14 and type 2 Diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet 52:506–513

    Google Scholar 

  • Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102:425–430

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson A, Barlow M, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  Google Scholar 

  • Lensins K, Lensins I (1979) Genus Medicago (Leguminosae): a taxonomic study. Dr W Junk bv Publishers, The Hague, The Netherlands

    Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, Wijk RV, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  Google Scholar 

  • Liu SC, Lin YR, Irvine JE, Paterson AH (1998) Mapping QTLs in autopolyploids. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 95–101

    Google Scholar 

  • Lukens L, Doebley J (1999) Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res 74:291–302

    Article  Google Scholar 

  • Mackay TF (2001) Quantitative trait loci in Drosophila. Nat Rev Genet 2:11–21

    Article  PubMed  Google Scholar 

  • Maureira IJ, Ortega F, Campos H, Osborn TC (2004) Population structure and combining ability of diverse Medicago sativa germplasms. Theor Appl Genet (in press)

    Google Scholar 

  • McCoy TJ (1987) Tissue culture evaluation of NaCl tolerance in Medicago species: cellular versus whole plant response. Plant Cell Rept 6:31–34

    Article  Google Scholar 

  • McCoy TJ, Smith LY (1984) Uneven ploidy levels and a reproductive mutant are required for interspecific hybridization of Medicago sativa L. and Medicago dzhawakhetica Bordz. Can J Genet Cytol 26:511–518

    Google Scholar 

  • McCoy TJ, Bingham ET (1988) Cytology and cytogenetics of alfalfa. In: Hanson AA, Barnes DK, Hill RR Jr (ed) Alfalfa and alfalfa improvement. Agron Monogr 29 ASA CSSA SSSA, Madison, WI, pp 737–776

    Google Scholar 

  • McCoy TJ, Echt CS, Mancino LC (1991) Segregation of molecular markers supports an allotetraploid structure for Medicago sativa, × Medicago papillosa, interspecific hybrid. Genome 34:574–578

    Google Scholar 

  • Mengoni A, Gori A, Bazzigalupo M (2000) Use of RAPD and microsatellite (SSR) to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breed 199:311–317

    Article  Google Scholar 

  • Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  Google Scholar 

  • Musial JM, Basford KE, Irwin JAG (2002) Analysis of genetic diversity within Australian lucerne cultivars and implications for future genetic improvement. Aust J Agric Res 53:629–633

    Article  Google Scholar 

  • Obert DE, Skinner DZ, Stuteville DL (2000) Association of AFLP markers with mildew resistance in autotetraploid alfalfa. Mol Breed 6:287–294

    Article  Google Scholar 

  • Osborn TC, Brouwer DJ, Kidwell KK, Tavoletti S, Bingham ET (1998) Molecular marker applications to genetics and breeding of alfalfa. In: Brummer EC, Hill NS, Roberts CA (eds) Molecular and cellular technologies for forage improvement. CSSA special publication number 26, Madison, WI, pp 25–31

    Google Scholar 

  • Perez F, Menendez A, Dehal P, Quiroz CF (1999) Genomic structural differentiation in Solamun: comparative mapping of the A-and E-genomes. Theor Appl Genet 98:1183–1193

    Article  Google Scholar 

  • Pritchard JK (2001) Deconstructing maize populations structure. Nature Genet 28:203–204

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stevens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  Google Scholar 

  • Pritchard JK, Stevens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  PubMed  Google Scholar 

  • Pupilli F, Lombarda P, Scotti C, Arcioni S (2000) RFLP analysis allows for the identification of alfalfa ecotypes. Plant Breed 199:271–276

    Article  Google Scholar 

  • Quiros CF (1982) Tetrasomic segregation for multiple alleles in alfalfa. Genetics 101:117–127

    Google Scholar 

  • Ray IM, Bingham ET (1989) Breeding diploid alfalfa for regeneration from tissue culture. Crop Sci 29:1545–1548

    Google Scholar 

  • Reich DE, Goldstein DB (2001) Detecting association in a case-control study while correcting for population stratification. Genet Epid 20:4–16

    Article  Google Scholar 

  • Ripol MI, Churchill GA, da-Silva JAG, Sorrells M (1999) Statistical aspects of genetic mapping in autopolyploids. Gene 235:31–41

    Article  PubMed  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    PubMed  Google Scholar 

  • Rosellini D, Veronesi F, Falcinelli M (1994) Recurrent selection for microgametophytic vigor in alfalfa and correlated responses at the sporophytic level. Crop Sci 34:933–936

    Google Scholar 

  • Salter R, Miller-Garvin JE, Viands DR (1994) Breeding for resistance to alfalfa root rot caused by Fusarium species. Crop Sci 34:1213–1217

    Google Scholar 

  • Scotti C, Pupilli F, Damiani F, Arcioni S (1992) Molecular marker assisted analysis of the heterozygosity in tetraploid alfalfa: inbreeding depression in S1 families. In: Rotili P, Zannone I (eds) Proceedings of the 10th International Conference of the EUCARPIA Medicago spp. group. Forage Crop Institute, Lodi, Italy, pp 236–242

    Google Scholar 

  • Scotti C, Pupilli F, Salvi S, Arcioni S (2000) Variation in vigour and in RFLP-estimated heterozygosity by selfing tetraploid alfalfa: new perspectives for the use of selfing in alfalfa breeding. Theor Appl Genet 101:120–125

    Article  Google Scholar 

  • Sills GR, Bridges W, Al-Janabi SM, Sobral B (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes and Jews. ex Grassl). Mol Breed 1:355–363

    Article  Google Scholar 

  • Skinner DZ, Loughin T, Obert DE (2000) Segregation and conditional probability of molecular markers with traits in autotetraploid alfalfa. Mol Breed 6:295–306

    Article  Google Scholar 

  • Sledge M, Ray I, Rouf Mian MA (2003) EST-SSRs for genetic mapping in alfalfa. Molecular breeding of forage and turf. Abstract, Third international symposium, Dallas, TX and Ardmore, OK, USA, p 79

    Google Scholar 

  • Sorrells ME (1992) Development and amplification of RFLPs in polyploids. Crop Sci 32:1086–1091

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Google Scholar 

  • Stanford EH (1951) Tetrasomic inheritance in alfalfa. Agron J 43:222–225

    Google Scholar 

  • Sumberg JE, Murphy RP, Lowe CC (1983) Selection for fiber and protein concentration in a diverse alfalfa population. Crop Sci 23:11–14

    Google Scholar 

  • Tavoletti S, Bingham ET, Yandell F, Veronessi F, Osborn TC (1996a) Half tetrad analysis in alfalfa using multiple RFLP markers. Proc Natl Acad Sci USA 93:10918–10922

    Article  PubMed  Google Scholar 

  • Tavoletti S, Veronessi F, Osborn TC (1996b) RFLP linkage map of a meiotic mutant based on an F1 population. J Hered 87:167–170

    Google Scholar 

  • Tavoletti S, Pesaresi P, Barcaccia G, Albertini E (2000) Mapping the jp (jumbo pollen) gene and QTLs involved in multinucleate microspore formation in diploid alfalfa. Theor Appl Genet 101:372–378

    Article  Google Scholar 

  • Thoquet P, Gherardi M, Journet ET, Kereszt A, Ane JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and isolation of agronomically important genes. BMC Plant Biol 2:1–13

    PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES IV (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  Google Scholar 

  • Veronesi F, Mariani A, Falcinelli M, Arcioni S (1986) Selection for tolerance to frequent cutting regimes in alfalfa. Crop Sci 26:58–61

    Google Scholar 

  • Viands DR, Barnes DK, Heichel GH (1981) Nitrogen fixation in alfalfa: response to bidirectional selection for associated characteristics. USDA Tech Bull 1643. US Government printing office, Washington, DC

    Google Scholar 

  • Villegas CT, Wilsie CP, Frey KJ (1971) Recurrent selection for high self-fertility in Vernal alfalfa (Medicago sativa L.). Crop Sci 11:881–883

    Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanskley SD (1992) Detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maureira, I., Osborn, T. (2004). Molecular Markers in Genetics and Breeding: Improvement of Alfalfa (Medicago sativa L.). In: Lörz, H., Wenzel, G. (eds) Molecular Marker Systems in Plant Breeding and Crop Improvement. Biotechnology in Agriculture and Forestry, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26538-4_8

Download citation

Publish with us

Policies and ethics