Skip to main content

Forest Management and Conservation Using Microsatellite Markers: The Example of Fagus

  • Chapter
Book cover Molecular Marker Systems in Plant Breeding and Crop Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 55))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asuka Y, Tani N, Tsumura Y, Tomaru N (2004a) Development and characterization of microsatellite markers for Fagus crenata Blume. Mol Ecol Note 4:101–103

    Article  Google Scholar 

  • Asuka Y, Tomaru N, Nishimura N, Tsumura Y, Yamamoto S (2004b) Spatial genetic structure of Fagus crenata (Fagaceae) in an old-growth beech forest revealed by microsatellite markers. Mol Ecol 13:1241–1250

    Article  PubMed  Google Scholar 

  • Buiteveld J, Bakker EG, Bovenschen J, de Vries SMG (2001) Paternity analysis in a seed orchard of Quercus robur L. and estimation of the amount of background pollination using microsatellite markers. For Genet 8:331–337

    Google Scholar 

  • Cifarelli RA, Gallitelli M, Cellini F (1995) Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. Nucleic Acid Res 23:3802–3803

    PubMed  Google Scholar 

  • Doligez A, Baril C, Joly HI (1998) Fine-scale spatial genetic structure with nonuniform distribution of individual. Genetics 148:905–919

    PubMed  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of sapling in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627

    Google Scholar 

  • Epperson BK, Chung MG (2001) Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am J Bot 88:1006–1010

    PubMed  Google Scholar 

  • Fischer D, Bachmann K (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques 24:796–802

    PubMed  Google Scholar 

  • Friedman ST, Adams WT (1985) Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theor Appl Genet 69:609–615

    Google Scholar 

  • Fujii N, Tomaru N, Okuyama K, Koike T, Mikami T, Ueda K (2002) Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Systemat Evol 232:21–33

    Google Scholar 

  • Hamilton MB, Pincus EL, di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507

    PubMed  Google Scholar 

  • Hamrick JL (1989) Isozymes and the analysis of genetic structure in plant populations. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, Oregon, USA, pp 87–105

    Google Scholar 

  • Igarashi T (1996) The relationship between variation of fructification and efficiency of pollination in Fagus crenata and F. japonica. Msc Diss, University of Tokyo

    Google Scholar 

  • Karagyozov L, Kalcheva ID, Chapman VM (1993) Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Res 21:3911–3912

    PubMed  Google Scholar 

  • Kelly JK, Willis JH (2002) A manipulative experiment to estimate biparental inbreeding in monkeyflowers. Int J Plant Sci 163:575–579

    Article  Google Scholar 

  • Kirkpatrick BW, Bradshaw M, Barendse W, Dentine MR (1995) Development of bovine microsatellite markers from a microsatellite-enriched library. Mamm Genome 6:526–528

    Article  PubMed  Google Scholar 

  • Kitamura S, Murata G (1979) Colored illustrations of woody plants of Japan, vol II. Hoikusha Publ, Osaka, Japan

    Google Scholar 

  • Kitamura K, Shimada K, Nakashima K, Kawano S (1997) Demographic genetics of the Japanese beech, Fagus crenata, at Ogawa forest preserve, Ibaraki, central Honshu, Japan. I. Spatial genetic substructuring in local population. Plant Species Biol 12:107–136

    Article  Google Scholar 

  • Kouno K, Mukouda M (1985) Flowering and seed-setting traits of three broadleaf trees, Fagus crenata, Cornus controvera and Aesculus turbinata. Bull Tohoku For Tree Breed Ctr 25:74–76

    Google Scholar 

  • Lench NJ, Norris A, Bailey A, Booth A, Markham AF (1996) Vectorette PCR isolation of microsatellite repeat sequence using anchored dinucleotide repeat primers. Nucleic Acids Res 24:2190–2191

    PubMed  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    PubMed  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of generic structure in plant populations. Annu Rev Ecol Sys 15:65–95

    Google Scholar 

  • Lyall JEW, Brown GM, Furlong RA, Ferguson-Smith MA, Affara NA (1993) Amethod for creating chromosome-specific plasmid libraries enriched in clones containing [CA]n microsatellite repeat sequences directly from flow-sorted chromosome. Nucleic Acids Res 21:4641–4642

    PubMed  Google Scholar 

  • Merzeau D, Comps B, Thiebaut B, Cuguen J, Letouzey J (1994) Genetic structure of natural stands of Fagus sylvatica L. (beech). Heredity 72:269–277

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DANN. Nucleic Acids Res 8:4321–4325

    PubMed  Google Scholar 

  • Nakashizuka T (1987) Regeneration dynamic of beech forests in Japan. Vegetatio 69:169–175

    Article  Google Scholar 

  • Obayashi K, Tsumura Y, Ihara-Ujino T, Niiyama K, Tanouchi H, Suyama Y, Washitani I, Lee C-T, Lee S-L, Muhammad N (2002) Genetic diversity and outcrossing rate between undisturbed and selectively logged forests of Shorea curtisii (Dipterocarpaceae) using microsatellite DNA analysis. Int J Plant Sci 163:151–158

    Google Scholar 

  • Ohkubo T (1992) Structure and dynamics of Japanese beech (Fagus japonica Maxim.) stools and sprouts in the regeneration of the natural forests. Vegetatio 101:65–80

    Article  Google Scholar 

  • Okaura T, Harada K (2002) Phylogeographical structure revealed by chloroplast DNA variation in Japanese beech (Fagus crenata Blume). Heredity 88:322–329

    Article  PubMed  Google Scholar 

  • Ostrander EA, Jong PM, Rine J, Duyk G (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci USA 89:3419–3423

    PubMed  Google Scholar 

  • Pakkanen A, Nikkanen T, Pulkkinen P (2000) Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scand J For Res 15:399–404

    Article  Google Scholar 

  • Peters R (1997) Beech forests. pp. 169, Kluwer, Dordrecht

    Google Scholar 

  • Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Mol Ecol 9:339–348

    Article  PubMed  Google Scholar 

  • Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glossl J, Kremer A (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328

    Article  Google Scholar 

  • Takahashi H, Nirawasa N, Furukawa T (1996) An efficient method to clone chicken microsatellite repeat sequences. Jpn Poultry Sci 33:292–299

    Google Scholar 

  • Takahashi M, Mukouda M, Koono K (2000) Differences in genetic structure between two Japanese beech (Fagus crenata Blume) stands. Heredity 84:103–115

    Article  PubMed  Google Scholar 

  • Takahashi T, Konuma A, Ohkubo T, Taira H, Tsumura Y (2004) Comparison of spatial genetic structures in Fagus crenata and F. japonica by the use of microsatellite markers. Silvae Genet (in press)

    Google Scholar 

  • Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of microsatellite markers for Fagus crenata and closely related species, F. japonica. Theor Appl Genet 99:11–15

    Article  Google Scholar 

  • Tomaru N, Mitsutsuji T, Takahashi M, Tsumura Y, Uchida K, Ohba K (1997) Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity 78:241–251

    Article  Google Scholar 

  • Tomaru N, Takahashi M, Tsumura Y, Takahashi M, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am J Bot 85:629–636

    Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2000) Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol Ecol 9:647–656

    Article  PubMed  Google Scholar 

  • UNESCO (2002) Properties inscribed on the word heritage list world heritage centre. UNESCO, Paris

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsumura, Y., Takahashi, M., Takahashi, T., Tani, N., Asuka, Y., Tomaru, N. (2004). Forest Management and Conservation Using Microsatellite Markers: The Example of Fagus. In: Lörz, H., Wenzel, G. (eds) Molecular Marker Systems in Plant Breeding and Crop Improvement. Biotechnology in Agriculture and Forestry, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26538-4_23

Download citation

Publish with us

Policies and ethics