Skip to main content

Problems easy for tree-decomposable graphs extended abstract

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 317))

Included in the following conference series:

Abstract

Using a variation of the interpretability concept we show that all graph properties definable in monadic second order logic (MS properties) with quantification over vertex and edge sets can be decided in linear time for classes of graphs of fixed bounded tree-width, giving an alternative proof of a recent result by Courcelle. We allow graphs with directed and/or undirected edges, labeled on edges and/or vertices with labels taken from a finite set. We extend MS properties to Extended Monadic Second-order (EMS) problems involving counting or summing evaluations given with the graph over sets definable in monadic second order logic. Our tecnique allowes us to solve also some EMS problems in linear time or in polynomial or pseudopolynomial time for classes of graphs of fixed bounded tree-width. Most problems for wich linear time algorithms for graphs of bounded tree width where previously known to exist, and many others, are EMS problems.

Research supported by the Swedish Natural Sciences Research Council and the Swedish Board for Technological Development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, Hopcroft and Ullman, Design and Analysis of Computer Algorithms Addison-Wesley 1972.

    Google Scholar 

  2. S. Arnborg, Reduced State Enumeration-Another Algorithm for Reliability Evaluation, IEEE Trans. Reliability R-27 (1978), 101–105.

    Google Scholar 

  3. S. Arnborg, Efficient Algorithms for Combinatorial Problems on Graphs with Bounded Decomposability — A Survey, BIT 25 (1985), 2–33.

    Google Scholar 

  4. S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of Finding Embeddings in a k-tree, SIAM J. Alg. and Discr. Methods 8(1987), 277–284.

    Google Scholar 

  5. S. Arnborg and A. Proskurowski, Characterization and Recognition of Partial 3-trees, SIAM J. Alg. and Discr. Methods 7(1986), 305–314.

    Google Scholar 

  6. S. Arnborg and A. Proskurowski, Linear Time Algorithms for NP-hard Problems on Graphs Embedded in k-trees, to app..

    Google Scholar 

  7. J. Barwise(ed.), Handbook of Mathematical Logic, Amsterdam, North-Holland 1977.

    Google Scholar 

  8. M.W. Bern, E.L. Lawler, and A.L. Wong, Linear time computation of optimal subgraphs of decomposable graphs,J. of Algorithms 8(1987) 216–235.

    Google Scholar 

  9. U. Bertele and F. Brioschi, Nonserial Dynamic Programming. Academic Press, New York, 1972.

    Google Scholar 

  10. H.L. Bodlaender, Dynamic Programming on Graphs with Bounded Tree-width, Ph D thesis, MIT 1987.

    Google Scholar 

  11. H.L. Bodlaender, Classes of Graphs with Bounded Tree-width, preprint, Dec 1986.

    Google Scholar 

  12. K. Compton and C.W. Henson, A new method for proving lower bounds on the computational complexity of first-order theories, Manuscript.

    Google Scholar 

  13. D.G. Corneil, H. Lerchs and L. Stewart Burlingham, Complement Reducible Graphs, Discrete Appl. Math. 3 (1981), 163–174.

    Google Scholar 

  14. B. Courcelle, Recognizability and Second-Order Definability for Sets of Finite Graphs,Preprint, Universite de Bordeaux, I-8634, Jan 1987.

    Google Scholar 

  15. J.E. Doner, Decidability of the Weak Second-Order theory of two Successors, Abstract 65T-468, Notices Amer. Math. Soc. 12(1965), 819, ibid. (1966), 513

    Google Scholar 

  16. R. Fagin, Generalized First-Order Spectra and Polynomial-Time Recognizable Sets, in Complexity and Computation, edited by R. Karp, SIAM-AMS Proceedings 7.

    Google Scholar 

  17. M.R. Garey and D.S. Johnson, Computers and Intractability, W.H. Freeman and Company, San Francisco (1979).

    Google Scholar 

  18. Y. Gurevich, Monadic Second-Order Theories, Ch XIII of Model-Theoretic Logics, Ed. Barwise and Feferman, Springer-Verlag, New York 1985, 479–506

    Google Scholar 

  19. S.T. Hedetniemi, Open problems concerning the theory of algorithms on partial k-trees, working paper 1987.

    Google Scholar 

  20. H. Immerman, Languages which capture Complexity Classes, proceedings of the 15th annual ACM Symposiom on the Theory of Computing, 1983 347–354.

    Google Scholar 

  21. D.S. Johnson, The NP-Completeness Column: An Ongoing Guide, J. of Algorithms 6(1984) 434–451.

    Google Scholar 

  22. D.S. Johnson, The NP-Completeness Column: An Ongoing Guide, J. of Algorithms 8(1987) 285–303.

    Google Scholar 

  23. M.O.Rabin, A simple Method of Undecidability proofs and some applications, In Log. Meth. Phil. Sci. Proc Jerusalem, 1964 58–68.

    Google Scholar 

  24. N. Robertson and P.D. Seymour, Graph Minors II. Algorithmic Aspects of Tree Width, Journal of Algorithms 7 (1986), 309–322.

    Google Scholar 

  25. A. Rosenthal, Computing the Reliability of a Complex Network, SIAM J. Appl. Math. 32 (1977) 384–393.

    Google Scholar 

  26. J.R. Schoenfield, Mathematical Logic, Reading 1967, Addison-Wesley.

    Google Scholar 

  27. P.Scheffler Linear-time Algorithms for NP-complete problems restricted to partial k-trees, Manuscript.

    Google Scholar 

  28. P.SchefflerManuscript.

    Google Scholar 

  29. D.Seese, Tree-partite Graphs and the Complexity of Algorithms, Preprint, P-Math 08/86, Akademie der Wissenschaften der DDR, Karl Weierstrass Institut für Mathematik

    Google Scholar 

  30. K. Takamizawa, T. Nishizeki and N. Saito, Linear-Time Computability of Combinatorial Problems on Series-Parallel Graphs, J. ACM 29(1982) 623–641.

    Google Scholar 

  31. J.W. Thatcher, J.B. Wright, Generalized Finite Automata Theory with an Application to a Decision Problem in Second-Order Logic, Mathematical Systems Theory 2(1968), 57–81.

    Google Scholar 

  32. T.V.Wimer, Ph D Thesis.

    Google Scholar 

  33. T.V.Wimer, S.T.Hedetniemi, and R.Laskar, A methodology for constructing linear graph algorithms, DCS, Clemson University, September 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Timo Lepistö Arto Salomaa

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arnborg, S., Lagergren, J., Seese, D. (1988). Problems easy for tree-decomposable graphs extended abstract. In: Lepistö, T., Salomaa, A. (eds) Automata, Languages and Programming. ICALP 1988. Lecture Notes in Computer Science, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19488-6_105

Download citation

  • DOI: https://doi.org/10.1007/3-540-19488-6_105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19488-0

  • Online ISBN: 978-3-540-39291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics