Skip to main content

Representation of knowledge and learning on automata networks

  • Conference paper
  • First Online:
Automata Networks (LITP 1986)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 316))

Included in the following conference series:

Abstract

We have seen that new techniques allow to design automata networks, capable of learning how to solve problems of high order. Those techniques clearly go beyond the limitations of the perceptron and are very different, in their spirit, from the techniques usually used in Artificial Intelligence.

They are based on a representation of knowledge which is distributed, fault tolerant, and an inference mechanism which is dynamical. These aspects make this approach look more like the way the brain works than the usual Al approach.

In the case of the learning-from-examples problem, it is possible to envision these methods as capable of automatically generate predicates characteristic of the set of examples, which would allow to use them as first steps in more classical Al systems (Expert systems for example).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. D.H. ACKLEY, O.E. HINTON, T.J. SEJNOWSKI: A Learning Algorithm for Boltzmann Machines. Cognitive Science, 9, pp 147–169, 1985.

    Article  Google Scholar 

  2. J.A. ANDERSON: Cognitive Capabilities of a Parallel System. In [3], pp 209–226.

    Google Scholar 

  3. E. BIENENSTOCK, F. FOGELMAN SOULIE, G. WEISBUCH Eds: «Disordered systems and biological organization», Springer-Verlag, NATO Asi Series in Systems and Computer Science, F20, 1986.

    Google Scholar 

  4. R.O. DUDA, P.E. HART: Pattern classification and scene analysis. Wiley, 1973.

    Google Scholar 

  5. J.A. FELDMAN: Connections. Byte, pp 277–283, april 1985.

    Google Scholar 

  6. F. FOGELMAN SOULIE: Pattern Recognition by Threshold Networks. In «Actes du Colloque International d'Intelligence Artificielle, Marseille», 1984.

    Google Scholar 

  7. F. FOGELMAN SOULIE: Brains and Machines: architectures for to-morrow? «Cognitive 85», CESTA-AFCET Ed., forum, (in french), 1985.

    Google Scholar 

  8. F. FOGELMAN SOULIE, E. GOLES-CHACC: Knowledge representation by automata networks. In «Computers and Computing», P. Chenin, C. di Crescenzo, F. Robert Eds, Masson-Wiley, pp 175–180, 1986.

    Google Scholar 

  9. F. FOGELMAN SOULIE, G. WEISBUCH: Random iterations of threshold networks and associative memory. SIAM J. on Computing, to appear.

    Google Scholar 

  10. F. FOGELMAN SOULIE, P. GALLINARI, S. THIRIA: Learning and associative memory. In «Pattern Recognition, Theory and Applications», P.A. Devijver Ed., NATO ASI Series in Computer Science, Springer-Verlag, to appear.

    Google Scholar 

  11. F. FOGELMAN SOULIE, P. GALLINARI, Y. LE CUN, S. THIRIA: Automata Networks and Artificial Intelligence. In «Computing on Automata Networks», F. Fogelman Soulié, Y. Robert, M. Tchuente Eds, Manchester Univ. Press, to appear.

    Google Scholar 

  12. E. GOLES-CHACC: Comportement Dynamique de résaaux d'Automates. Thesis, Grenoble, 1985.

    Google Scholar 

  13. E. GOLES-CHACC: this volume.

    Google Scholar 

  14. T.N.E. GREVILLE: Some applications of the pseudo inverse of a matrix. SIAM Rev. 2, pp 15–22, 1960.

    Google Scholar 

  15. D.O. HEBB: The Organization of Behavior. Wiley, 1949.

    Google Scholar 

  16. G.E. HINTON: Learning in Parallel Networks. Byte, pp 265–273, april 1985.

    Google Scholar 

  17. G.E. HINTON, J.A. ANDERSON (Eds): Parallel Models of Associative Memory. Hillsdale, Erlbaum, 1981.

    Google Scholar 

  18. J.J. HOPFIELD: Neural Networks and Physical Systems with Emergent Collective Computational Abilities, P.N.A.S. USA, vol 79, pp 2554–2558, 1982.

    Google Scholar 

  19. T. KOHONEN: Self-Organization and Associative Memory. Springer Series in Information Sciences, vol 8, Springer-Verlag, 1984.

    Google Scholar 

  20. Y. LE CUN: A learning scheme for assymetric threshold network. In «Cognitive 85», CESTA-AFCET Ed., pp 599–604, 1985.

    Google Scholar 

  21. Y. LE CUN: Learning process in an asymmetric threshold network. In «Disordered systems and biological organization», E. Bienenstock, F. Fogelman Soulié, G. Weisbuch Eds, Springer-Verlag, NATO Asi series in systems and computer science, no20, pp 233–240, 1986.

    Google Scholar 

  22. Y. LE CUN, F. FOGELMAN SOULIE: Modèles Connexionnistes de l'Apprentissage. Special issue on "Apprentissage et Machine", Intellectica, to appear.

    Google Scholar 

  23. W. SMAC CULLOCH, W. PITTS: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophysics, 5, pp 115–133, 1943.

    Google Scholar 

  24. R.S. MICHALSKI, L.G. CARBONELL, T.M. MITCHELL: Machine Learning. Tioga, 1983.

    Google Scholar 

  25. M. MINSKY, S. PARERT: Perceptrons, an Introduction to Computational Geometry. Cambridge, MIT Press, 1969.

    Google Scholar 

  26. J. von NEUMANN: Theory of self reproducing automata. A.W. Burks Ed. Univ. Illinois Press, 1966.

    Google Scholar 

  27. D.C. PLAUT, S.J. NOWLAN, G.E. HINTON: Experiments on Learning by Back Propagation. Carnegie Mellon University Technical Report, CMU-CS-86-126, 1986.

    Google Scholar 

  28. F. ROSENBLATT: Principles of Neurodynamics. Sparton, 1962.

    Google Scholar 

  29. D.E. RUMELHART, G.E. HINTON, R.J. WILLIAMS: Learning internal representations by error propagation. In [30].

    Google Scholar 

  30. D.E. RUMELHART, J.L. MAC CLELLAND Eds: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, Foundations. MIT Press, 1986.

    Google Scholar 

  31. D.E. RUMELHART, J.L. MAC CLELLAND: On learning the past tenses of english verbs. In [30].

    Google Scholar 

  32. T.J. SEJNOWSKI, G.E. HINTON: Separating figure from ground with a Boltzmann machine. In «Vision, brain and cooperative computation». Arbib M.A., Hanson A.R. Eds, Cambridge, MIT Press, 1985.

    Google Scholar 

  33. T.J. SEJNOWSKI, P.K. KIENKER, G.E. HINTON: Learning symmetry groups with hidden units: beyond the perceptron. to appear in Physica D.

    Google Scholar 

  34. T.J. SEJNOWSKI, C.H. ROSENBERG: NETtalk: a parallel network that learns to read aloud. Johns Hopkins Technical report JHU/EECS-86/01.

    Google Scholar 

  35. D.L. WALTZ, J.B. POLLACK: Massively Parallel Parsing: a Strongly Interactive Model of Natural Language Interpretation. Cognitive Science. no 9, pp 51–74, 1985.

    Google Scholar 

  36. G. WEISBUCH, F. FOGELMAN SOULIE: Scaling laws for the attractors of Hopfield networks. J. Phys. Lett., 46, 623–630, 1985.

    Google Scholar 

  37. B. WIDROW, M.E. HOFF: Adaptive switching circuits. IRE WESCON Conv. Record, part 4, pp 96–104, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Choffrut

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soulie, F.F. (1988). Representation of knowledge and learning on automata networks. In: Choffrut, C. (eds) Automata Networks. LITP 1986. Lecture Notes in Computer Science, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19444-4_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-19444-4_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19444-6

  • Online ISBN: 978-3-540-39270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics