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Abis.tract. A polyhex graph represents the carbon atom skeleton of a 

condensed polycyclic aromatic hydrocarbon, a family of benzene-like 

molecules, various methods for characterizing the polyhex graphs are 

described and discussed, including the topological index, characteris- 

tic polynomial, sextet polynomial, etc. Enumeration of the number of 

the maximum matching (or Kekul6 patterns) is also discussed. 

I. Introduction 

There have been known among the chemists a number of "condensed 

polycyclic aromatic hydrocarbons (CPCAH)" whose skeletal structures are 

represented by what the graph-theoreticians like to call as polyhexes 

or hexagonal animals. 

Benzene, C6H6, which is the most fundamental molecule among them, 

is a regular hexagonal molecule and plays as their unit structure. 

H 
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H 

benzene 

Naphthanlene, C10H8, 

are fused. 

is known as a molecule in which two benzene rings 

CO CO 
II 

naphthalene 
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There are three possible structures for three regular hexagons to 

be fused into one connected graph as shown below: 

f anthracone '"t 
C14 H 10 catahex 

D henanthrene IV 

C13H9 
V perihex 

Namely, there are three 3-hexagonal animals. However, no stable com- 

pound has ever been isolated or synthesized corresponding to the third 

entry (V), since it has an odd number of points (carbon atoms). Thus 

in chemical sense, only those polyhexes are called as isomers Which 

have both the same numbers of hexagons and points. Anthracene (III) 

and phenanthrene (IV) are isomers each other, while compound (V) is 

not. 

The number of isomeric polyhexes (either graph-theoretical or 

chemical) rapidly increases with the number of hexagons, whose enumer- 

ation has been partly accomplished by HararY and Read [i]. Polyhexes 

are classified into two groups, i.e., catahexes and perihexes, depend- 

ing that the dual graph is a tree or a non-tree. Graphs I to IV are 

catahexes, while V is a perihex. Enumeration of the number of peri- 

hexes seems to be almost impossible [2]. 

Generally isomeric compounds have different properties and stabi- 

lities. For example, compound III is less stable than IV. The reason 

for the difference in the stabilities is attributed to the difference 

in their mathematical properties, mainly in the following two respects. 

i) The number of the maximum matching or the Kekul~ numbers K(G)'s for 

III and IV are, respectively, 4 and 5 as shown in Fig. i. ii) The sum 

of the positive roots of the characteristic polynomial 

PG(X) = (-i) N det(A - XE) 
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N 
= ~ a k x N-k (i) 

k=0 

is larger for IV than for III, which can be presumed from the absolute 

values of the determinant of the adjacency matrix A, or of the last 

term a N of PG(X) as 

P I I I ( X )  = x a ~ - t 6 x 1 2 + 9 8 x l Q - 2 9 6 x e + 4 7 3 x S - 3 9 2 x 4 + 1 4 8 x 2 - 1 6  

PIv(x) = x~4-16x~2+98x~Q-297x~+479x~-407x~+166x2-25. 

  III a III b 

 IVb ~]VC 

Fig. 1 Kekul~ patterns. 

Both of the above two facts are interrelated to each other through 

the following relation. Namely, for a polyhex with an even number 

~N=2m) of points we have [3] 

a N = (-i) TM {K(G) }2. (2) 

Besides this relation there have been proposed a number of interesting 

methods for enumerating the value of K(G) for a given polyhex graph, 

on which we are going to discuss. 
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2. Topological Index [4,5] 

For graph G the non-adjacent number p(G,k) is defined as the num- 

ber of ways for choosing k disconnected lines, p(G,0) being defined as 

unity. The number of the maximum matching for G is p(G,m), 

p(G,m) = K(G) (m = [N/2]). (3) 

From now on we are concerned with even polyhexes (N=2m). The Z~counting 

polynomial QG(X) is defined as 

m k 
QG(X) = ~ p(S,k) x . (4) 

k=0 

The topological index Z G is the sum of the p(G,k)'s, or 

m 
Z G = ~ p(G,k) = QG(1). (5) 

k=0 

The graph G-£ is defined as the subgraph obtained from G by delet- 

ing line £, and the graph G~£ as the subgraph of G-£ obtained by 

deleting all the lines which were adjacent to £ in G (See Fig. 2). 

G G-e G@£ 

Fig. 2 Subgraphs of G. 

The inclusion.-exclusion principle ensures the recursive relation 

for p(G,k) as 

p(S,k) = p(G-£,k) + p(G~£,k-l), (6) 

which gives 

QG(X) = QG-£(x) + X-QG(9£(x) (7) 

and 

Z G = ZG_ £ + ZG~£(x)- 

A number of interesting methematical properties 

these quantities. 

(8) 

have been known for 
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3. Characteristic Polxngmial 

Let the adjacency matrix A of graph G with N points be defined as 

the NUN square matrix with elements 

1 i and j are neighbors 
, = (9) 

Ai3 0 otherwise~ 

which gives the characteristic polynomial PG(X) as in Ea. (i). 

The p(G,k) numbers and the sets of the coefficients of PG(X) for 

smaller tree [6] and non-tree [7] graphs, and polyhex graphs [8] are 

extensively tabulated. 

4. Sextet Polynomial 

Consider a Kekul6 pattern as shown in Fig. 1 for a given polyhex. 

If a set of three circularly arranged double bonds are located on a 

certain hexagon as Ia, one can get another Kekul6 pattern as Ib just 

by rotating them by 60 degrees. For example, II!a and IIIb are related 

to each other as in the relation between Ia and Ib, and we can find 

many other couplings among the group of Kekul6 patterns IIIa-d. Let us 

call the sets of the three double bonds as shown below respectively as 

the proper and improper sextets. A couple of the proper and improper 

sextets in a given hexagon will be called as an aromatic sextet or 

simply as a sextet. 

proper sextet improper sextet 

No two sextets are allowed to share a bond. However, it is pos~ 

sidle for certain Kekul~ patterns to have more than one sextet located 

on a set of disjoint hexagons. Such disjoint sextets are called to be 

resonant with each other. It is to be noted here that for certain 

kinds of Kekul~ patterns there is no unique way for choosing a sextet 

or a set of resonant sextets. 
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According to Clar [9] let us denote a sextet by a circle and sup- 

press the remaining double bonds to give a sextet pattern as shown be- 

low. The above arguments can be expressed in terms of the sextet pat- 

terns by taking IVb as an example. 

IVb > 

sextet patterns 

Here the zero-sextet pattern is also defined that has no circle. It 

turned out that IVb generates all the posssble sextet patterns for IV. 

For a given polyhex, define the resonant sextet number r(G,k) as 

the number of ways for choosing k disjoint but resonant sextets from 

G. Then the sextet polynomial BG(X) is defined as 

m 
BG(X) = ~ r(G,k) x k. (i0) 

k=0 

For graph IV we have 

2 
BG(X) = 1 + 3x + x . 

The present author has shown [i0,ii] that for catahexes and such 

"thin" perihexes that have no coronene skeleton as 

we have 

coronene 

B G(1) = K(G). (ii) 

5. Clar Transformation and Sextet Rotation 

Since the both sides of Eq. (ii) are derived from quite different 

enumeration problems, Eq. (ii) is a very important relation. In order 

to analyze this problem the following two graphical operations are in- 

troduced. 
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Define the Clar transformation C as a simultaneous substitution of 

all the proper sextets by circles in a given Kekul~ pattern k i followed 

by the transformation of the remaining double bonds into single bonds, 

Clar transformation 

as exemplified for graph VI in Fig. 3. 

as 

It can symbolically be written 

C(ki) = s i. (12) 

VI 

Kekul~ Clar trans- 
pattern formation 

Sextet 
pattern 

c 

K(G) = i{k~}i = I{sl}l 

Resonant 
sextet number 

Sl } r(G,2)=2 
s2 

% 
r(G,1)=4 

ss 

s6 

s,/} r(G,0)=l 

= BG(1) 

Fig. 3 Ciar transformation and resonant sextet numbers 
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Define the sextet rotation (R) as a simultaneous rotation of all 

the proper sextets in a g~ven Kekul~ pattern k. into the improper sex- 
1 

tets to give another Kekul~ pattern k~, 
J 

sextet rotation 

or symbolically as 

R(k i) = kj. (13) 

For example, we get R(kl)=k 7 for graph VI. Note that for such k i with 

no proper sextet, e.g., k 7 in Fig. 3, one cannot operate the sextet 

rotation. In this case let us put it down as 

R(k i) = #, 

and call such k i as the root Kekul~ p@ttern. 

Similarly the counter-sextet rotation (~) is defined as follows: 

counter-sextet rotation 

Note that the operation ~ is not the inverse of R and vice versa. 

Now try to operate the sextet and counter~sextet rotations to the 

set of the Keku!~ patterns for graph VI. The resultant relationship 

among {k i} for VI is a hierarchical structure and can be expressed by 

directed rooted trees as shown in Fig. 4, where all the entries in {k i} 

can find the corresponding nodes including the root. It is to be noted 

that the two trees obtained by the sextet and counter~sextet rotations 

are not necessarily isomorphic as exemplified in Fig. 4. 

The results obtained in Figs. 3 and 4 are valid for all the cata- 

hexes and "thin" perihexes. For "fat" perihexes one has to extend the 

concept of the sextet to the "super sextet", on which, however, we are 

not going to discuss here [ii]. 

It has been shown [ii] that the proof of Eq. (ii) and of the re- 

sults in Figs. 3 and 4 can be obtained straightforwardly if the fol- 

lowing Lemma is proved: 



[Lemma] 
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For each polyhex graphf there exists one and only 

one root Kekul~ pattern ~a Kekul~ pattern with no 

proper sextet). 

6. Coefficients of NBMO 

Herndon has proposed an interesting method for enumerating the 

K(G) value for a po!yhex graph by using the coefficients of the non- 

bonding molecular orbital (NBMO) [12]. However, only the mathematical 

procedure for obtaining the K(G) value is introduced here. 

Given a polyhex graph G with an even number of points. Of course 

G is bipartite. The component points are either starred (*) or unstar- 

red. Delete from G a point p together with all the adjacent lines. 

The resultant graph G~ p is also bipartite but with an odd number of 

points. Divide all the points into two groups, namely, the starred {s} 

and unstarred {r} so that the endpoints belong to {s}. Assign a set 

of integers (ns~ 0) to all the entries of {s} under the following 

conditions: (i) The point farthest to the endpoints is given 1 or -i. 

(ii) The "neighbor-sum" of these numbers for each unstarred point r be- 

comes zero. 

0 0 0 

> 

Fig, 4 H±erarchical trees of sextet rotations. 
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VI. 

neighbors 
of r 

n s = 0. (14) 
s 

Examples are given in Fig. 5 for several subgraphs derived from 

Take the sum of these numbers for the starred points which were 

-3 

-I 2 -3 -I 2 -3 
-l -l 

Fig. 5 NBMO and Kekul~ numbers. 

adjacent to p ±n the original graph G. As evident from Fig. 5 the 

CaDsolutel value of this sum is independent of the choice of p and is 

equal to the number K(G) of the maximum matching for G. Although this 

relation is known to be related to Eqs. (2) and (3), a rigorous proof 

has not yet been obtained. Further study is expected. 

7. Several Series of K(G) Numbers 

The numbers of the maximum matching K(G) for certain series of 

graphs are known to form interesting series of numbers. A few examples 

are shown: 



Gn 
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K(Gn) 
n +  1 

(~_~] n+2 [~_~] n+2 

/ g  

m+ n 
( n ] 
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