Skip to main content

Narrow-gap semiconductor detectors and lasers

  • Conference paper
  • First Online:
Book cover Narrow Gap Semiconductors Physics and Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 133))

Abstract

The major applications of narrow-gap materials continue to be in infrared detectors for passive imaging and in diode lasers, primarily for high resolution spectroscopy and related uses. The development of sophisticated epitaxial growth and fabrication techniques is continually expanding the capability of both types of devices. Background-limited HgCdTe and Pb-salt photodiodes and diode arrays have been developed for detection in the 8–12 μm wavelength range. High speed (> 1 GHz) HgCdTe photodiodes with sensitivities close to the quantum limit have been developed for heterodyne detection. The feasibility of PbS and HgCdTe CCIDs has been investigated for advanced imaging applications.

In the Pb-salt laser area the temperature for cw operation has been increased well beyond 100K by the use of heterostructures, significantly higher output powers and longer lifetimes have been achieved and DFB structures have been developed. Advances in various epitaxial growth techniques in both HgCdTe and the Pb-salts and the demonstration of low-loss Pb-salt waveguides at 10 μm indicate that sophisticated integrated optical circuits could be developed in these materials for long wavelength optical communications and related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Melngailis and A. J. Strauss, Appl. Phys. Lett. 8, 179 (1966).

    Google Scholar 

  2. T. C. Harman, J. Electron. Materials 8, 191 (1979).

    Google Scholar 

  3. G. Fiorito and G. Gasparini, Alta Frequenza 47, 114 (1978).

    Google Scholar 

  4. M. B. Reine and R. M. Broudy, Modern Utilization of Infrared Techology III SPIE 124, 80 (1977).

    Google Scholar 

  5. R. M. Broudy and M. B. Reine, Modern Utilization of Infrared Technology III SPIE 124, 62 (1977).

    Google Scholar 

  6. J. T. Longo et. al., Modern Utilization of Infrared Technology III SPIE 124, 102 (1977).

    Google Scholar 

  7. H. Prier, Appl. Phys. 20, 189 (1979).

    Google Scholar 

  8. P. Vohl and C. M. Wolfe, J. Electron. Materials 7, 659 (1978).

    Google Scholar 

  9. T. C. Harman, J. Electron. Materials 8, 191 (1979).

    Google Scholar 

  10. W. Rolls, R. Lee and R. J. Eddington, Solid State Electron. 13, 75 (1970).

    Google Scholar 

  11. J. T. Longo, E. R. Gertner and A. S. Joseph, Appl. Phys. Lett. 19, 202 (1971).

    Google Scholar 

  12. S. H. Groves, J. Electron. Materials 6, 195 (1977).

    Google Scholar 

  13. D. K. Hohnke and H. Holloway, Appl. Phys. Lett. 24, 633 (1974); D. K. Hohnke et. al., Appl. Phys. Lett. 29, 98 (1976).

    Google Scholar 

  14. D. L. Smith and V. Y. Pickhardt, J. Electron. Materials 5, 247 (1976).

    Google Scholar 

  15. J. N. Walpole et. al., Appl. Phys. Lett. 28, 552 (1976).

    Google Scholar 

  16. A. Lopez-Otero, Thin Solid Films 49, 1 (1978).

    Google Scholar 

  17. M. Bleicher et. al., J. Mater. Sci. 12, 317 (1977).

    Google Scholar 

  18. R. B. Schoolar, J. D. Jensen and G. M. Black, Appl. Phys. Lett. 31, 620 (1977).

    Google Scholar 

  19. H. Holloway and J. N. Walpole, Progress in Crystal Growth and Characterization, Vol. 2, B. Pamplin, Ed. (Pergamon Press, Oxford, England, 1980).

    Google Scholar 

  20. G. Fiorito, G. Gasparini and F. Svelto, Appl. Phys. Lett. 23, 448 (1973); Ibid., Infrared Phys. 17, 25 (1977); Ibid., Appl. Phys. 17, 105 (1978).

    Google Scholar 

  21. J. Marine and C. Motte, Appl. Phys. Lett. 23, 450 (1973).

    Google Scholar 

  22. A. M. Andrews et. al., Appl. Phys. Lett. 26, 438 (1975).

    Google Scholar 

  23. D. L. Spears, Infrared Phys. 17, 5 (1977); also D. L. Spears, 6th Annual Meeting, Federation of Analytical Chemistry and Spectroscopy Societies, Philadelphia, PA, (1979).

    Google Scholar 

  24. E. C. Sutton et. al, Astrophys. J. 230, L105 (1979); also A. L. Betz et. al., Astrophys. J. 221, L97 (1979).

    Google Scholar 

  25. R. T. Ku and D. L. Spars, Optics Letters 1, 84 (1977).

    Google Scholar 

  26. F. J. Leonberger, A. L. McWhorter and T. C. Harman, Appl. Phys. Lett. 26, 704 (1975).

    Google Scholar 

  27. R. A. Chapman et. al., Appl. Phys. Lett. 32, 434 (1978).

    Google Scholar 

  28. J. N. Walpole, S. H. Groves and T. C. Harman, IEEE Device Research Conf., Ithaca, N.Y. (1977).

    Google Scholar 

  29. J. N. Walpole et. al., Appl. Phys. Lett. 30, 524 (1974); also J. N. Walpole et. al., Appl. Phys. Lett. 29 307 (1976).

    Google Scholar 

  30. K. J. Linden, K. W. Mill and J. F. Butler, IEEE J. Quantum Electron. QE 13, 720 (1977).

    Google Scholar 

  31. S. H. Groves, K. W. Mill and A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).

    Google Scholar 

  32. K. J. Slegr, G. F. McLane and H. Strom, IEEE Electron. Devices Mtg., Washington, D. C. (1974).

    Google Scholar 

  33. H. Preier et. al., J. Appl. Phys. 47, 5476 (1976).

    Google Scholar 

  34. W. Lo, IEEE J. Quantum Electron. QE 13, 591 (1977).

    Google Scholar 

  35. R. W. Ralston et. al., IEEE J. Quantum Electron. QE 9, 350 (1973).

    Google Scholar 

  36. J. N. Walpole et. al., Appl. Phys. Lett. 23, 620 (1973).

    Google Scholar 

  37. W. Riedel and H. Prier, IEEE Device Research Conf., Ithaca, N.Y. (1977); also IEEE J. Quantum Electron., to be published.

    Google Scholar 

  38. J. N. Walpole et. al., J. Appl. Phys. 44, 2905 (1973).

    Google Scholar 

  39. R. W. Ralston et. al., J. Appl. Phys. 45, 1323 (1974).

    Google Scholar 

  40. R. W. Davis and J. N. Walpole, IEEE J. Quantum Electron. QE 12, 29 (1979).

    Google Scholar 

  41. W. Lo, 10th Intern. Conf. on Solid State Devices, Tokyo (1978).

    Google Scholar 

  42. R. W. Ralston et. al., Appl. Phys. Lett. 26, 64 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wlodek Zawadzki

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Melngailis, I. (1980). Narrow-gap semiconductor detectors and lasers. In: Zawadzki, W. (eds) Narrow Gap Semiconductors Physics and Applications. Lecture Notes in Physics, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10261-2_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-10261-2_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10261-8

  • Online ISBN: 978-3-540-38382-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics