Skip to main content

What do we know about the geometric nature of equations which can be solved using the inverse scattering technique?

  • Inverse Scattering Theory and Related Topics
  • Conference paper
  • First Online:
  • 148 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 130))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes and References

  1. C. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura: “Methods for solving the Korteweg-de Vries equation,” Phys. Rev. Lett. 19, 1095–1097 (1967)

    Google Scholar 

  2. P.D. Lax: “Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math. 21, 467–490 (1968)

    Google Scholar 

  3. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur: Stud. Appl. Math. 53, 249 (1974)

    Google Scholar 

  4. A. Scott, F. Chu, D. McLaughlin: “The soliton: a new concept in applied science,”Proc. IEEE 61, 1443 (1973)

    Google Scholar 

  5. H. Wahlquist, F. Estabrook: “Prolongation structures of nonlinear evolution equations,” J. Math. Phys. 16, 1–7 (1975)

    Google Scholar 

  6. F. Estabrook, H. Wahlquist: “Prolongation structures, connection theory, and Bäcklund transformations,” in Nonlinear Evolution Equations Solvable by the Laplace Transform, ed. by F. Calogero (Pitman, London, 1978)

    Google Scholar 

  7. R. Hermann: “The pseudopotentials of Estabrook and Wahlquist, the geometry of solitons, and the theory of connections,” Phys. Rev. Lett. 36, 835 (1976)

    Google Scholar 

  8. R. Hermann: The Geometry of Nonlinear Differential Equations, Bäcklund Transformations, and Solitons, Parts A and B (Math Sci Press, Brookline, Massachusetts, 1976)

    Google Scholar 

  9. R. Hermann, Toda Lattices, Cosymplectic Manifolds, Bäcklund Transformations, and Kinks, Parts A and B (Math Sci Press, Brookline, Massachusetts, 1977)

    Google Scholar 

  10. R. Hermann: “Modern differential geometry in elementary particle physics,” in Proceedings of the VII GIFT Summer School, Lecture Notes in Physics, ed. by J. Azcárraga (Springer, New York, 1978)

    Google Scholar 

  11. R. Hermann: “The Lie-Cartan geometric theory of differential equations and scattering theory,” in Proceedings of the 1977 Park City (Utah) Conference on Differential Equations, ed. by P. Bynes, M. Dekker (New York, 1979)

    Google Scholar 

  12. R. Hermann: “Prolongation, Bäcklund transformations, and Lie theory as algorithms for solving and understanding nonlinear differential equations,” in Solitons in Action, ed. by K. Lonngren, A. Scott (Academic, New York, 1978)

    Google Scholar 

  13. The 1976 Ames Research Center (NASA) Conference on the Geometric Theory of Nonlinear Waves, ed. by R. Hermann (articles by Estabrook, Wahlquist, Hermann, Morris, Gorones, R. Gardner, and Scott) (Math Sci Press, Brookline, Massachusetts, 1977)

    Google Scholar 

  14. R. Hermann: “Time-varying linear systems and the theory of nonlinear waves,” in Proceedings of the CDC Conference of the IEEE, San Diego, 1979

    Google Scholar 

  15. R. Hermann: Cartanian Geometry, Nonlinear Waves, and Control Theory, Part A, Interdisciplinary Mathematics, Vol. 20 (Math Sci Press, Brookline, Massachusetts, 1979)

    Google Scholar 

  16. R. Hermann: “The inverse scattering technique of soliton theory, Lie algebras, the quantum mechanical Poisson-Moyal bracket, and the rotating rigid body,” Phys. Rev. Lett. 37, 1591 (1976)

    Google Scholar 

  17. I.M. Gel'fand, L.A. Dikii: “Resolvents and Hamiltonian systems,” Functional Anal. Appl. 11, 93–105 (1977)

    Google Scholar 

  18. I.M. Gel'fand, L.A. Dikii: “Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations,” Russian Math. Surveys 30(5), 67–100 (1975)

    Google Scholar 

  19. Y.U. Manin: “Algebraic aspects of nonlinear differential equations,” in Modern Problems in Mathematics, (Viniti, Moscow, 1978), Vol. 11, pp. 5–152

    Google Scholar 

  20. D.R. Lebedev, Y.U. Manin: “Gel'fand-Dikii Hamiltonian operators and coadjoint representation of Volterra group,” IETP preprint, Moscow (1978)

    Google Scholar 

  21. M. Adler: “On a trace functional for pseudo-differential operators and symplectic structure of the Korteweg-de Vries type equations,” Inv. Math. 50, 219–248 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John A. DeSanto Albert W. Sáenz Woodford W. Zachary

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Hermann, R. (1980). What do we know about the geometric nature of equations which can be solved using the inverse scattering technique?. In: DeSanto, J.A., Sáenz, A.W., Zachary, W.W. (eds) Mathematical Methods and Applications of Scattering Theory. Lecture Notes in Physics, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10023-7_119

Download citation

  • DOI: https://doi.org/10.1007/3-540-10023-7_119

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10023-2

  • Online ISBN: 978-3-540-38184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics