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Abstract 

We characterize the images of Szilard languages under alphabetical homomorphisms 

using so called label grammars and show: If L is a label language (i.e. a language 

generated by such grammar) then L -{~is a ceding (renaming) of some Szilard language. 

This result shows that arbitrary homomorphisms do not have more generating power than 

nonerasing ones except that they generate the empty word. Combining this result with 

other properties of label languages, established elsewhere, one obtains character- 

izations of label languages and of codings of Szilard languages including those by 

finite shuffle expressions and equations. 

Since one might interprete label grammars as a special kind of labelled Petri nets, 

where each transition has exactly one input arc, we solved the elemination problem of 

-transitions for this restricted class of Petri nets, even if there occur infinite 

firing-sequences using only ~-transitions within a net. 

Introduction 

Informally Szilard languages describe the derivation process of context-free 

grammars. Th~s is done by writing down the rules exactty in the order they have been 

used to yield a terminating derivation. Very often one denotes labels instead of the 

rules itself where each rule has exactly one label. This one to one correspondence 

supplies the class of Szilard languages with strictly deterministic properties~ which 

force them to form an anti AFL and not to contain all the regular sets. 

From a pure theoretical point of view this is a very unlucky situation. Moreover 

one might be interested only in the important part of a derivation not denoting for 

instance labels of rules like A--->B . Thls is only possible within the theory of 

Szilard languages if one allows ~-labels for the rules. Arbitrary labelling is ne- 

cessary if one likes to supply rules which are structurally similar with the same 

label. 

This suggestions give the motivation to introduce label grammars, which exactly 

generate the images of Szilard languages under alphabetical homomorphisms. The class 

~(LY~) of label languages now also has nice formal properties.(See H6pner 7#b and 

H6pner/Opp ~7 ),Regarding the similarities between context-free languages and label 

languages as for instance finite expression representations, the connection with recog- 

nizable sets of trees, and the characterization using equations one might ask, whether 

there exist more similarities. One of the most interesting questions might be the prob- 

lem, whether the ~-labels do or do not have a stro~ effect on the generation of label 

languages. 
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Results 

Passing some lemmas we show that there exists a result similar to the Greibach 

normalform theorem, which unfortunately cannot be proved with the same methods. 

Definition 'labeL~rammar' 

A label grammar G is a tupel G = (N,R,Ao,X) , where N = ~Ao,AI,...,An} is a 

N is the start symbol, X = ~Xl,X2, .,x m~ is finite set of nonterminals, A ° .. 

a finite set of labels, and R ~ N ~ (X ~ I~} ) ~ N ~ is a finite set of 

context-free, labelled rules. 

Not at i on 

A rule (A,x,w) r= R may also be denoted by A---~-~x w , and it is called an Tx-rule' 

for short. Recall that in a label grammar there might exist more than one x-rule for 

some x ~ X ~[~} . In fact the rules of a label grammar are context-free rules, to 

each of which a symbol from X or the empty word is assigned. 

The following convention will be used: Nonterminals will be denoted by capital 

letters A,B,C,... or Ai,Bi, .... i ~ IN ° . Strings of nonterminals will be denoted by 

small u,v,w,u~,vl,ui,vi,... , labels will be denoted by x,y,z,xi,Yi,Zi,.., and strings 

of labels will be written as oc, ~, ~ , ~(i' ~i' ~i"'" 

The derivation process for label grammars will be defind according to the ordinary 

notation of derivat ons. in context-free grammars but disregarding the order of the sym- 

bols that form a sentential form. In the sequel ~#J denotes the Parikh mapping 

N~ >IN card(N) : For vectors a,b r= IN card(N) o " o , a = b, a >I b, a < b, a + b, 

a - b will be understood componentwise. The vector (0 .... ,0) will be denoted by O. 

Definition 'one steR. derivation' 

Let w I e N~ w 2 e N, (A,x,v) e R. Then W1~A,x,~W 2 holds true, 

if and only if: 

(i) ~(w I) ~#J(A) ~ 

(ii) ~(w 2) ~lJ(w I) - ~#(A) + q~Y(v) 

If we are on y interested in the label of the underlying rule, we write 

Wl====~==>x w 2 instead of w I (A,x,v~W2 " 

We extend this notion for arbitrary derivations by: 

Definition 'many step derivation' 

for each oC e X ~ we define the relation ' ? > ~ by: 

(i) W~==~=~w for each w E N + 

(ii) if w I w 2 and w2~w 3 , then w 1 ~ w  3 

A derivation Wl- ~-==~w 2 is called ' ~-derivation'. 
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Definition v label I an~ua~e' 

A language L~ X ~ is called label language iff there exists a label grammar G = 

(N,R,Ao,X) such that: 

L = LL(G):= ~ e X~ I A o ~ R  in G ~ 

It is obvious that each label language, as it is defined here, is the image of a 

Szilard language of a context-free grammar under alphabetical homomorphism. Therefore 

we denote the family of all label languages by ~m~oc(~) . 

We recall a normalform theorem as it can be found in H6pner 7~c~ . 

Theorem 'first normalform' 

For each label grammar G = (N,R,Ao,X) we can find a label grammar 

such that the following holds: 

(i) ~ is reduced, that means: for each A e N 

a derivation A ° ~ ~wA ~ 

(ii) ~ doesn't contain a rule of the form (A, ~, ~) . 

(iii) LL( ~ ) LL( G ) ~ 

The construction of the grammar ~ is similar to that one used to eleminate the 

empty word within context-free grammars, so we need no detailed proof. 

In the next part we define a restricted class of derivations, called 'normal 

derivations', and show that the set of words generated by normal derivations only is 

exactly the whole label language of the underlying grammar. 

= (F,F, Ao,X) 

there exists 

Definition 'simple derivation', 'x-sequence', 'path of a sequence' 

A derivation of the form 

Wo (Bo,Xo,Vo)~ Wl (B 1,x I,VI)> w2 " " " Wn (Bn,Xn,Vn >Wn+1 , n ~ O 

within a given label grammar is called 'simple derivation' if and only if: 

qy(v i) - q##(Bi+ I) ~ _O for O ~< i ~ n-1 . 

In the case that x i = ~ for 0 ~< i ~< n-1 and x n ~ ~ holds, this simple 

E N + is ca led the Xn-derivation is called 'x-sequence'. The word BoBI'''B 
n n 

'path' of this Xn-Sequence. 

Definition 'sequenced derivation' 

A derivation of the form w ° Yl ) w 1 ~  W2 " " " Wn-1~Wyn n within a given 

label grammar is called a 'sequenced derivation' iff each subderivation 

O ~ i ~ n-l, is an Yi+1-sequence. 
wi Yi+1 /wi+1 ' 

Not every derivation within a label grammar is a sequenced derivation, ofcourse, but 

we can show: 
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Theorem 'sequenced derivations are sufficient' 

Let G be a label grammar in first normalform, then 

LL( G ) = ~ ~e x + I there exists a sequenced derivation Ao~ ~ in g I 

Proof: 

We define a transformation T I on arbitrary ~-derivations d~ such that T1(d) 

is a sequenced e(-derivation. The transformation successively rearranges the ~-rules 

of the given derivation. 

Definition 'the transformation TI~ 

step 0 : Let d be the given derivation. 

step I : Mark the rightmost unmarked ~-rule in the derivation d. 
If there is no such rule, then output d. Stop. 

step 2 : Shift the ~-rule which has been marked in step I to the right as 
far as possible. This means: until the next rule needs a nonterminal, 
which only occurs in the substring generated by this }-rule. 
This yields the new derivation d. Return to step I. 

Of course the transformation T I terminates for every input derivation d, since 

each time we reach step 2 one additional ~-rule is marked and there is only a finite 

number of ~-rules within d. On the othrr hand T I terminates only if all the 

-rules have been moved to the rightmost position which is characterized by the fact 

that the lefthand side of the next rule can be found only within the righthand side of 

the former one. Moreover there is no ~-rule at the very end of the derivation d 

since G has been assumed to be in first normalform, i.e. each terminating rule has a 

label x ~ . Therefore the output of the transformation T I is a sequenced 

derivation generating the same word ~ . This proves our theorem. 

Now we are going to define a certain 'loop structure' for x-sequences using another 

transformation T 2. To do this we define IA-loops' for each A c N. 

Definition 'A-loops within a sequence ~ 

Let Wo~iB1,Xl,Vl)) w I '..--)wi_ I ~ Bi,xi,vi)~wi ... wj_ I (aj,xj#vj)~ wj ... 

............ > Wn_ 1 ( B n , X n , V n ) }  w n be an Xn-Sequence  (x I = ) f o r  t ~ t ~ n - l ,  x n ~ X ) .  

If B i = Bj ~ N and the path Bi"'Bj_ I ~ N + doesn't contain symbol a twice (i.e. 

B I # B k f o r  i ~ I 4 k ~ j - 1  ) t h e n  t h e  s u b d e r i v a t i o n  

B i -(Bi,~,vi ~) u i ~i+1,~,v ~ ui+ I ... (Bj_I,~,vj_I)~ u.j_1 

is called a ~B.-loop' of this sequence. ] 

We want to point out, that A-loops of a sequence use only ~-rules which are pair- 

wise different and at most card(N) of them. Thus there is only a finite number of 

different A-loops for each A e N that can be constructed within a label grammar. 
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Example 

A more pictoral representation of A-loops may be necessary. Suppose the following 

derivation tree of some x-sequence (we choose a speclal example for demonstration) : 

/_ 
/_ 

/_ 

Z 
J 
Z 
/ 

~# B-loop 

k 

 }c-,oop 

l B- loop 

\ 

J ~  
A triangle like ~ 

denotes the application of 

a rule A~uBv . Thus 

the base of a triangle 

represents the sentential 

form generated by this rule. 

~x-rule 

To each A-loop of a sequence corresponds a subword w 

of the path of the whole sequence, which is the path of the loop and has the following 

properties: (i) no symbol in w occurs twice, and (ii) the symbol appearing 

immedTately next to the subword w equals the first symbol of w . in the example we 

may mark some of the loops within the path as follows: 

AIB-C-DIBAI~CABDAC[[~BACD. One can see that we havn't marked all the loops. A complete 

marking without partial overlapping would be the following one: 

AIB-CD]BA~C~AC~]BACD. The transformation T 2 as defined next will use a unique 

marking of loops within a sequence. 

Definition 

Let s 

step 0 : 

step I : 

'the transformation T2 for sequences' 

be a given x-sequence of a label grammar. 

Start at the very left of s , no loops within s are marked. 

Find the leftmost unmarked loop within s and mark it. A loop within a 

sequence is called leftmost, if there exist no other loop containing a 

rule in front of this loop. Thus the leftmost loop is uniquely defined 

by the longest prefix of the path which doesn't contain a symbol twice. 
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step 2 : 

step 3 : 

If in step I no further loop has been found, then do step 3, otherwise 

repeat step I. 

If for each A e N ali the marked A-loops are d;rectly following each 

other (no rule is separating two A-loops) then stop. Otherwise rearrange 

the marked loops within the sequence in such a way, that for each A e N 

the A-loops are directly following the first one within the relative 

order they had before. Repeat step I. 

Let us apply the transformation T 2 to the sequence of the previous 

Example 'application of T2~ 

example. 

(step O) Let s be the sequence with the path ABCDBACDCABDACBDBACD , 

(step I, step 2) We mark the leftmost loop : A~BACDCABDACBDBACD . 

Applying step I and step 2 three times more yields: A~-C-~BA~IACI~BACD 

No further loops can be found, so we apply step 3. In this step we have to erase 

the B-loop with path BD at the end of the sequence and insert this loop next to the 

first B-loop. This yields a sequence with the following path : AFCD~-~BA~C~AB-~ACBACD. 

Since we have rearranged the loops we repeat step I. We find another A-loop and mark it: 

A~BA[C-DTC~ACD . We pass step 2 and reach step 3 where we find that no re- 

arranging is necessary, the stop condition is met and therefore we have finished. The 

sequence with the above path is the unique output of the transformation T 2 . 

Without proof we state: 

Fact 'proR.e.rties ' of the transformation T ' 
" 2--- 

T 2 terminates for every input sequence s and the path w of the output sequence 

has the following form: 
I I 2 2 n n 

w = UlV I ... Vk(1)u2v I ... Vk(2)u 3 ... UnV I ... Vk(n)Un+ I 

- 0 ~ n (card(N) 
- k(i)~ ~o for I ~ ] ~ n 

- u i £ N + for 2 ~ i ~ n+1 , u I E N 

i N e - v. ~ for I ~ i ~ n and I ( j ~ k(i) 
J 

- Ig(u.) ~ card(N) for I ~ i ( n+1 
I 

- Ig(v~) ~ card(N) for I ~ i ( n, I ~ j k(i) 
i I J 

Each vj and v m is a path of B.-loopj respectively Bi-loo p, and if i ~ I then 

B i ~ B I . If we define max := card(N) .(card(N) + I ) for a given label grammar, 

then we have I ~ lg( UlU 2 ..° Un+ I ) ~ max for the above path of the output 

x-sequence T2(s) . Note that rearranging loops within a sequence doesnTt change 

the generated lab@l. 

We now define 'normal sequences' as the invariants under this transformation. 

where: 
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Definition 'normal x-sequence', 'normal ............ derivation'. 

Each x-sequence s for which T2(s) is equal to s Itself is called a 

'normal x-sequence'. A derivation is called 'normal derivation' if and only 

if it is a sequenced derivation, each sequence of which is a normal sequence. 

We obtain: 

Theorem 'normal derivations are sufficient' 

For each label grammar in first normalform the following holds: 

LL(G) ~ ~ e X ~ I there exists a normal oC-derivation A 0 ~ ~ ~. 

Proof: 

We know that it is sufficient to consider only sequenced derivations~ 

Now suppose s Is a sequenced ~-derivation built up by the sequences Sl, s2,... , s m . 

We apply the transformation T 2 to each sequence s i. This gives a new collection of 

normal sequences T2(Sl), T2(s2) , ... , T2(s m) . These normal sequences can be com- 

posed to the desired normal c~-derivation. 

Having defined normal derivations, we can construct a label grammar without ~-rules 

equivalent to a given arbitrary label grammar in first normaiform. 

Construction ' ~-free label 9radar' 

Let G = (N,R,Ao,X) be a label grammar in first normalform. 

Define a new alphabet: F := ~ I A ~ N ~ . 
-+ 

= " ~ N + by w:= BIB2"..B n e N Define the operation ' -- ' for each w BIB 2 "B n 

let ~:= ~ Let max := card(N).(card(N) + I ) as before. 

Define sets of rules by: 

RI := I (A,x,w~) A--x~w is a x-sequence in G with path v ~ N~ such 

that Ig(v) ( max and u is obtained from v by deletion 

of some (all, no) symbols 

R 2 := # (~,X~WlW2~) there exists a rule (B,x,w~)C R I 

A-loop A~wIAB in G 

R 3 := [ 2 

and there exists an I 

and 

Note: The sets RI, R2, and R 3 are finite, since each pathlength of the underlying 

derivations is bounded by some constant. 

The new label grammar G" is finally defined by: 

G = (N~, R I ~ R 2~ R3, Ao, X). By definition ~ doesn't contain a ~-rule. 

We are now in the position to formulate and prove our main result. Because of the 

lack of space we cannot prove it completely, but we are able to present the difficult 

part of the proof. 
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Theorem 'we can do without ~-rules ~ 

Let G be an arbitrary label grammar, then there exists a label grammar 

such that LL( ~ ) LL( G ) [~ and ~ doesn't contain a rule of 

the form (A,~,w) . 

Proof: 

For the given label grammar G we construct a label grammar in first normalform 

which generates LL(G) - #A~. Thus without restriction we may assume G to be in first 

normalform. For this label grammar G we construct ~ as it is defined in the above 

construction. ~ has no ~-rules and it is left to show LL(~) = LL(G). 

The proof of LL(~)~ LL(G) follows the idea that each rule of ~ has been con- 

structed by derivations within G and is not presented here. 

For the proof of the statement LL(G)~ LL(G N) we need some auxiliary notations and 

definitions. 

Notation 'lists of words' 

Let w I, ... , w n~ N ~ be words, then [w I .... , w n] is called a 'list'. The 

= : empty list is denoted by E] . Let i I Ew I ..... w~ and 12 [vl, ... , v m 

be lists, then: cons(f1,12) := [w I ..... Wn, v I ..... Vn] 

Let I be a list and w be a word, then delete(wtl) denotes the list which is 

obtained from the list I by deletion of the first occurence of w in this list. If 

I doesn't contain w, then delete(w,l) := I. 

Definit.!on 'collection of free loops within normal sequences' 

Let s be a normal sequence of the label grammar G = (N,R,Ao,X). 

(Recall that N = {Ao, ... , A n } ). 

F(s) denotes the 'collection of free loops' within s and is defined as follows: 

F(s) := (Fo(S) , F1(s) , ... , Fn(S) ) , where for each 0 ~ i ~ n, Fi(s) is a 

list of words from N defined by: 

Fi(s) is the list of all the words v ~ N-l-for which Ai~vA i is a marked 

loop within s after applying the transformation T 2. Note s = T2(s). r'~reover 

F.(s) contains v as often as the loop Ai~)vA i appears within T2(s) 
I 

F.(s) thus is the list of words which are created within A.-ioops as additional 
I I 

sentential forms and which are not empty. 

Example 

Let us return to our example of a sequence which had the path 

ABCDBACDCABDACBDBACD . After applying T 2 we obtained the path 

A ~ B A I ~ C ~ A C D  which corresponds to the pictural representation of the 

sequence s as follows: 
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if we write FA( ) instead of Fo( ) using 

~. A~,,,~ ' the ordered set N = ~A,B,C,D} of non- 

terminals, then FA(S) = [Vl, v2~ , where 

B v I Ts that part of the sentential form 

which is marked by ~ , and v 2 is the 

zjC part marked by ..... ; v I and v 2 are 

Z~ ~-" supposed to be nonempty. 

~J ~ Since there is no D-loop, the list FD(S) 
A 

~ B ~  is empty. The other loops are treated similar 

~ such that the collection F(s) is of the 

form F(s) = ([v1,v2~,[v3,v4-~,[v5~,[]) . 

We want to generalize the term 'collection of free loops' to normal derivations 

which are compositions of normal sequences. Informally we call a loop A ~=~vA 

within a normal sequence of a normal derivation 'free' if no symbol of the word v 

is replaced in later steps of the derivation. 

Definition 'collection of free loops within normal derivations' 

For each normal derivation d the collection of free loops will be denoted by F(d). 

Thus if d is a normal sequence, then F(d) coincides with the definition of the 

collection of free loops within a sequence. 

Now suppose d = (A~--------~ wB ) is a normal derivation for which 

F(d) = (Fo(d),F1(d) ..... Fn(d) ) is defined and suppose 

s = (B ~v ) is a normal sequence, then for the normal ~x-derivation 

x ~ ~wv ) the collection of free loops ds := (A~wB x 

F(ds) = (Fo(dS),F1(ds) , ... ,Fn(dS) ) is defined as follows: 

Case I: The symbol B of the sentential form wB is not created by any free loop 

within the normal derivation d. In other words: no word u from the lists 

F.(d) that form F(d) contains the symbol B. For all 0 ~ i ~ n F.(ds) is 
I I 

then defined by: Fi(ds) := cons(Fi(d),Fi(s)) . 
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Case 2: The symbol B is created within some free loop, i.e. there exists an index 

I, 0 ~ I ~ n such that the list Fl(d) contains a word u , which in turn 

contains the symbol B. Let I be the smallest index of This kind and let 

u be the first word in the list Fl(d) , which contains the symbol B. 

Then: 
F.(ds) := cons(F.(d),F.(s) ) for all 0 ~ i ~ n, i = I . 

I I i 

Fi(ds) := cons(delete(u,Fl(d)) , Fl(S) ) 

We now define a transformation T on normal derivations as follows: 
3 

Definition 'the T 3 transformation to delete free loops' 

Let d be a normal derivation, then T3(d) denotes exactly that normal derivation 

which is obtained by: 

(i) deletion of all free loops within d. 

(ii) deletion of all the loops A~*A within d. 

The term 'deletion of a loop' should be understood as follows: 

If A~uB~uvB ~ uvw is a normal derivation and B~vB is a free 

loop within this derivation d, i.e. F(d) contains v, then 

A uB uw is the derivation after deletion of the free loop B~vB. 

Clearly T3(d) is a normal derivation which doesn't have free loops. If d 

normal sequence, then T3(d) is a sequence, the pathlength of which is at most 

This follows from the fact about T2(d). Moreover if d = (A~w) is a normal 

derivation, then 
T3(d) (A~----------~v) where q3U(w) = qy(v) + ~-~j~(u) , 

the sum is taken over all the words u which are 

contained in the list F(d). ( ' u in F(d) ' for short!) 

isa 

max . 

We now prove the following statement: 

Statement 

Let G and ~" as in the construction. 

if d = (A ~=~==)w ) is a normal derivation in G, then there exists a derivation 
_ 

A~vu in G such that the following holds: 

(i) qj~(w) = qJ/(v) + ~-~(v') , v' in F(d). 

(ii) ~ contains the symbol ~. exactly once iff the list F.(d) is 
I i 

not the empty list. 

if this statement is correct, then for each normal derivation A ~  in G 

there exists a derivation A ~ in G, since terminating derivations in G do 

have only empty lists Fi(d). (Each symbol, generated in some free loop has to be re- 

placed in some further step of the derivation.) 
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N 

Since normal derivations are sufficient to describe LL(G) we have LL(G)~ LL(G)! 

We will prove the statement by induction over the number of normal sequences that 

form the normal derivations in G. 

Basic step: 

Suppose s = (Aj x >w ) is a normal sequence in G. Then 

is a sequence with pathlength at most max. By definition of 

we find a rule (Ao,X,V~) e R I such that A-i is contained in 

the list F.(s) is not empty. 
I 

t! 

T3(s) = (Ao x~V ) 

R I in the construction 

exactly once iff 

This follows from the fact that for free A-loops, even after deletion, the symbol 

remains on the path of the sequence. Moreover ~P(w) = qy(v) + S~)M(v') 

in F(s), is true by definition of the transformation T 3 . 

nduction hypothesis: 

The statement is true for all normal derivations d = (A~w) 

are composed by at most k sequences, i.e. Ig(o( ) # k . 

in G , which 

Induction step: 

Let ds = (Ao ~==~==~wiAi~>WlW2 __ __ ) be a normal derivation in G such that 

d = (Ao ~==~=~wiA i _  ) is a normal derivation composed by k sequences and 

s = (A i x ~w2 ) is a normal sequence. 

We have to distinguish two cases: 

Case I: 

The symbol A i within the sentential form wiA i is not created in any free loop 

of d. 

From the induction hypothesis we know that there exists a derivation in ~ of the 

form Ao==~=~ vIAi~1 , where ~(wiA i ) = ~(viA i ) ÷ S~JV(v ') 
v' in F(d) 

Since Ai===~=>x w 2 is a normal sequence there exists a rule (compare with the basic 

step) (Ai,XpV2~2) such that ~/(w 2) = ~J/(v 2) + f~K(v I) 
v' in F(s) 

and u--~ contains the symbol Aj exactly once iff 

u- 7 doesn't contain the symbol ~ and Fi(s) is not empty or 

F.(d) is empty and F.(ds) is not empty. 
J J 

(Note, that u 2 may be chosen as an arbitrary subword of the underlying path!) 

The derivation Ao===~e/~ viAiu-11 in G and the rule (Ai,x,v2E 2) of G 

can now be composed to the derivation 

A o / v l A i u l ~ v l v 2 u l u  2 

This derivation fullfills the statement, since: 
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q~M(WlW 2) = ~(w I) + ~J#(w 2) = "~(v I) + ~I/(v') 
v' in F(d) 

y(v 2) + ~qY(v') 
v' in F(s) 

= ~Y(VlV 2) + ~1#Z(v') 
v ~ in F(ds) 

This last equation follows from the definition of F(ds) case I. 

Moreover ~i-u2 contains the symbol JA-~ only if F.(ds) is not empty. 
J 

contained in "Q-IT2 then it is contained exactly once: either in u'-1 if 

free A.-loopj ,or in ~ if s has a free A.-loopj and d doesn't. 

If A. is 
J 

d has a 

case 2: 

The symbol A i of ds = (Ao~WiAi~)WlW 2 ) 

of d. 

By definition of F(ds) 

Fi(ds) = f 

is created within some free loop 

we have: 

cons(Fi(d),Fi(s)) for all i # I 

cons(delete(uAi,Fi(d)) , Fi(s) ) for i = I , where 

uA i is the first word in the list Fl(d) which contains 

the symbol AiJ moreover I is the smallest index possible. 

From this we infer: 

v T in F(ds) v' in F(d) v' in F(s) 

From the induction hypothesis we know the existence of a derivation in G : 

Ao~VlU-~A I such that: 

 # wiA i) ÷ S 
v' in F(d) 

A I is contained within the sentential form v1~-iA I since the ITst Fl(d) is not 

empty (at least contains uA. ). 

Since uA i is in the list Fl(d) of free Al-lOops , we know that there exists a 

derivation AI .~uAIA i in G with pathleng?h at most card(N). 

Since A i x~W 2 is a sequence, there exists a rule (Ai,x,v2~-2) in R I such that: 

(~e~) ~lJ(W2) = ~y(v 2 ) + ~ ~(v') 
v' in F(s) 

and u 2 contains symbols from the path of this derivation. We will determine u--2 

Iater. 

Therefore we can find a rule (A-~,xuv2~) ~ R 2 and a rule (A--l,X, UV2~-2A-- I) ~ R 3 . 

We may combine the ~C-derivation Ao~V171A I in G' with each of this ruleso 

This results in two different derivations ; 

A ~ ~ (a) o~VlUiAl~VlUlUV2U 2 and 

( b )  , 
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For each of this derivations the property (i) from the statement is true~ as can 

be seen by: 

"~(w 1) + y ( w  2) = R.~(v 1) - "VjM(Ai) + , ~  lY (v ' )  + 
v'  in F(d)  

= qjV(v I) - qjP(A i )  + ~ "~ ( v ' )  + qJjV(v 2) + , ~ -  y ( v ' )  
v T in F(d) v v in F(s)  

= &Y(v I) + q~(v 2) + ~ ~J/(v') + 7(uA i) - ~V(A i) 
v' in F(ds) 

ly(v I) + ~y(V 2) + ~/#(u) + ~ q#S(v') 
v' in F(ds) 

o ~(viv2u) + ~ ~(v') 
v' in F(ds) 

qJ/(w 2) , using ~ 

, using @~) 

, using (~ 

We now have 

(resp. ~I-E2~I 

empty.This can 

In the case 

Suppose F.(d) 
J 

exactly once. 

empty, then 

m ~  

to choose derivation (a) or (b) and to find u--9 such that UlU 2 
) contains the symbol ~ exactly once iff the list F.(ds) is not 

J J 
be done as follows: 

j # I F.(ds) is not empty iff F.(d) or 
J J 

is not empty, then by induction hypothesis 

Therefore ~ can be chosen not to contain 

F.(s) is not empty and by definition of R I 

F.(s is not empty. 
J 
u~ contains the symbol Aj 

A-j. Suppose Fj(d) is 

we can find ~-~ such that 

the symbol Aj. is contained exactly once. This defines u-- 2 for all symbols A.j ~A-II " 

In the case j = I things are different. Since Fl(d) at least contains the word 

uAi, the list Fl(d) is not empty. Now if Fl(s) is empty two subcases are possible: 

(I) Fl(dS) is empty, since uA i is the only word within this list. We can 

choose the derivation (a) using the rule (~-l,X,UV2~) E R 2 . 

(2) Fl(ds) is not empty. We then use the rule (Tl,x,uv2u2~ I) ~ R 3 and 

derivation (b), 

In both subcases the property (ii) of the statement is fullfiiled. 

If Fl(S) is not empty, then F(ds) is not empty and as in (2) we use derivation (b). 

Since we considered all possibilities we have proven the induction step. By induction 

the statement is proven for all normal derivations in G and therefore the inclusion 

LL(G) c LL('~) holds true. 

As a corollary of our main theorem one may show the following normalform for 

label grammars. The proof can be done using induction over the length of derivations 

and is omitted. 

Corollary 'normalform for label ,grammars' 

For each label language L E ~(~) one can find a label grammar 

( i )  LL(G) = L - ~ } .  

(ii) If (A,x,w) is a rule within G, then x • X and I9(w) ~ 2 

G such that 
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Kindly referring to the literature we list some corollaries which can be obtained 

using the normalform for label grammars. 

Corollary 

If L is the homomorphic image of some Szilard language, then L - #~is the image 

of a Szilard language under a nonerasing homomorphlsm. 

C£rqllary 

For each label grammar G it is decidable whether LL(G) is empty or finite. 

Corollary 

Each infinite label language contains an infinite regular set. 

Corollary 

Each label language L contains a letter-equivalent context-free anguage L ~. 

That is: q~(L) = ~jv(~) . 

Corollary 

Each label language can be defined by equations using the operatlons: 

union, leftconcatenation with a symbol, and shuffle combined with leftconcatenation. 

Corollary 

The language L I := ~aiba j } i ~ j ~ 0 ~ is a label language, whereas 

the language L 2 := ~ aiba i I i ~0 ~ cannot be generated by a label grammar. 
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