
RENAMING AND ERASING IN SZILARD LANGUAGES

Matthias H6pner
Manfred Opp

Institut f. Informatik, Univ. Hamburg
Schl~terstr. 70 , D-2000 Hamburg 13

Abstract

We characterize the images of Szilard languages under alphabetical homomorphisms

using so called label grammars and show: If L is a label language (i.e. a language

generated by such grammar) then L -{~is a ceding (renaming) of some Szilard language.

This result shows that arbitrary homomorphisms do not have more generating power than

nonerasing ones except that they generate the empty word. Combining this result with

other properties of label languages, established elsewhere, one obtains character-

izations of label languages and of codings of Szilard languages including those by

finite shuffle expressions and equations.

Since one might interprete label grammars as a special kind of labelled Petri nets,

where each transition has exactly one input arc, we solved the elemination problem of

-transitions for this restricted class of Petri nets, even if there occur infinite

firing-sequences using only ~-transitions within a net.

Introduction

Informally Szilard languages describe the derivation process of context-free

grammars. Th~s is done by writing down the rules exactty in the order they have been

used to yield a terminating derivation. Very often one denotes labels instead of the

rules itself where each rule has exactly one label. This one to one correspondence

supplies the class of Szilard languages with strictly deterministic properties~ which

force them to form an anti AFL and not to contain all the regular sets.

From a pure theoretical point of view this is a very unlucky situation. Moreover

one might be interested only in the important part of a derivation not denoting for

instance labels of rules like A--->B . Thls is only possible within the theory of

Szilard languages if one allows ~-labels for the rules. Arbitrary labelling is ne-

cessary if one likes to supply rules which are structurally similar with the same

label.

This suggestions give the motivation to introduce label grammars, which exactly

generate the images of Szilard languages under alphabetical homomorphisms. The class

~(LY~) of label languages now also has nice formal properties.(See H6pner 7#b and

H6pner/Opp ~7),Regarding the similarities between context-free languages and label

languages as for instance finite expression representations, the connection with recog-

nizable sets of trees, and the characterization using equations one might ask, whether

there exist more similarities. One of the most interesting questions might be the prob-

lem, whether the ~-labels do or do not have a stro~ effect on the generation of label

languages.

245

Results

Passing some lemmas we show that there exists a result similar to the Greibach

normalform theorem, which unfortunately cannot be proved with the same methods.

Definition 'labeL~rammar'

A label grammar G is a tupel G = (N,R,Ao,X) , where N = ~Ao,AI,...,An} is a

N is the start symbol, X = ~Xl,X2, .,x m~ is finite set of nonterminals, A ° ..

a finite set of labels, and R ~ N ~ (X ~ I~}) ~ N ~ is a finite set of

context-free, labelled rules.

Not at i on

A rule (A,x,w) r= R may also be denoted by A---~-~x w , and it is called an Tx-rule'

for short. Recall that in a label grammar there might exist more than one x-rule for

some x ~ X ~[~} . In fact the rules of a label grammar are context-free rules, to

each of which a symbol from X or the empty word is assigned.

The following convention will be used: Nonterminals will be denoted by capital

letters A,B,C,... or Ai,Bi, i ~ IN ° . Strings of nonterminals will be denoted by

small u,v,w,u~,vl,ui,vi,... , labels will be denoted by x,y,z,xi,Yi,Zi,.., and strings

of labels will be written as oc, ~, ~ , ~(i' ~i' ~i"'"

The derivation process for label grammars will be defind according to the ordinary

notation of derivat ons. in context-free grammars but disregarding the order of the sym-

bols that form a sentential form. In the sequel ~#J denotes the Parikh mapping

N~ >IN card(N) : For vectors a,b r= IN card(N) o " o , a = b, a >I b, a < b, a + b,

a - b will be understood componentwise. The vector (0 ,0) will be denoted by O.

Definition 'one steR. derivation'

Let w I e N~ w 2 e N, (A,x,v) e R. Then W1~A,x,~W 2 holds true,

if and only if:

(i) ~(w I) ~#J(A) ~

(ii) ~(w 2) ~lJ(w I) - ~#(A) + q~Y(v)

If we are on y interested in the label of the underlying rule, we write

Wl====~==>x w 2 instead of w I (A,x,v~W2 "

We extend this notion for arbitrary derivations by:

Definition 'many step derivation'

for each oC e X ~ we define the relation ' ? > ~ by:

(i) W~==~=~w for each w E N +

(ii) if w I w 2 and w2~w 3 , then w 1 ~ w 3

A derivation Wl- ~-==~w 2 is called ' ~-derivation'.

246

Definition v label I an~ua~e'

A language L~ X ~ is called label language iff there exists a label grammar G =

(N,R,Ao,X) such that:

L = LL(G):= ~ e X~ I A o ~ R in G ~

It is obvious that each label language, as it is defined here, is the image of a

Szilard language of a context-free grammar under alphabetical homomorphism. Therefore

we denote the family of all label languages by ~m~oc(~) .

We recall a normalform theorem as it can be found in H6pner 7~c~ .

Theorem 'first normalform'

For each label grammar G = (N,R,Ao,X) we can find a label grammar

such that the following holds:

(i) ~ is reduced, that means: for each A e N

a derivation A ° ~ ~wA ~

(ii) ~ doesn't contain a rule of the form (A, ~, ~) .

(iii) LL(~) LL(G) ~

The construction of the grammar ~ is similar to that one used to eleminate the

empty word within context-free grammars, so we need no detailed proof.

In the next part we define a restricted class of derivations, called 'normal

derivations', and show that the set of words generated by normal derivations only is

exactly the whole label language of the underlying grammar.

= (F,F, Ao,X)

there exists

Definition 'simple derivation', 'x-sequence', 'path of a sequence'

A derivation of the form

Wo (Bo,Xo,Vo)~ Wl (B 1,x I,VI)> w2 " " " Wn (Bn,Xn,Vn >Wn+1 , n ~ O

within a given label grammar is called 'simple derivation' if and only if:

qy(v i) - q##(Bi+ I) ~ _O for O ~< i ~ n-1 .

In the case that x i = ~ for 0 ~< i ~< n-1 and x n ~ ~ holds, this simple

E N + is ca led the Xn-derivation is called 'x-sequence'. The word BoBI'''B
n n

'path' of this Xn-Sequence.

Definition 'sequenced derivation'

A derivation of the form w ° Yl) w 1 ~ W2 " " " Wn-1~Wyn n within a given

label grammar is called a 'sequenced derivation' iff each subderivation

O ~ i ~ n-l, is an Yi+1-sequence.
wi Yi+1 /wi+1 '

Not every derivation within a label grammar is a sequenced derivation, ofcourse, but

we can show:

247

Theorem 'sequenced derivations are sufficient'

Let G be a label grammar in first normalform, then

LL(G) = ~ ~e x + I there exists a sequenced derivation Ao~ ~ in g I

Proof:

We define a transformation T I on arbitrary ~-derivations d~ such that T1(d)

is a sequenced e(-derivation. The transformation successively rearranges the ~-rules

of the given derivation.

Definition 'the transformation TI~

step 0 : Let d be the given derivation.

step I : Mark the rightmost unmarked ~-rule in the derivation d.
If there is no such rule, then output d. Stop.

step 2 : Shift the ~-rule which has been marked in step I to the right as
far as possible. This means: until the next rule needs a nonterminal,
which only occurs in the substring generated by this }-rule.
This yields the new derivation d. Return to step I.

Of course the transformation T I terminates for every input derivation d, since

each time we reach step 2 one additional ~-rule is marked and there is only a finite

number of ~-rules within d. On the othrr hand T I terminates only if all the

-rules have been moved to the rightmost position which is characterized by the fact

that the lefthand side of the next rule can be found only within the righthand side of

the former one. Moreover there is no ~-rule at the very end of the derivation d

since G has been assumed to be in first normalform, i.e. each terminating rule has a

label x ~ . Therefore the output of the transformation T I is a sequenced

derivation generating the same word ~ . This proves our theorem.

Now we are going to define a certain 'loop structure' for x-sequences using another

transformation T 2. To do this we define IA-loops' for each A c N.

Definition 'A-loops within a sequence ~

Let Wo~iB1,Xl,Vl)) w I '..--)wi_ I ~ Bi,xi,vi)~wi ... wj_ I (aj,xj#vj)~ wj ...

............ > Wn_ 1 (B n , X n , V n) } w n be an Xn-Sequence (x I =) f o r t ~ t ~ n - l , x n ~ X) .

If B i = Bj ~ N and the path Bi"'Bj_ I ~ N + doesn't contain symbol a twice (i.e.

B I # B k f o r i ~ I 4 k ~ j - 1) t h e n t h e s u b d e r i v a t i o n

B i -(Bi,~,vi ~) u i ~i+1,~,v ~ ui+ I ... (Bj_I,~,vj_I)~ u.j_1

is called a ~B.-loop' of this sequence.]

We want to point out, that A-loops of a sequence use only ~-rules which are pair-

wise different and at most card(N) of them. Thus there is only a finite number of

different A-loops for each A e N that can be constructed within a label grammar.

248

Example

A more pictoral representation of A-loops may be necessary. Suppose the following

derivation tree of some x-sequence (we choose a speclal example for demonstration) :

/_
/_

/_

Z
J
Z
/

~# B-loop

k

 }c-,oop

l B- loop

\

J ~
A triangle like ~

denotes the application of

a rule A~uBv . Thus

the base of a triangle

represents the sentential

form generated by this rule.

~x-rule

To each A-loop of a sequence corresponds a subword w

of the path of the whole sequence, which is the path of the loop and has the following

properties: (i) no symbol in w occurs twice, and (ii) the symbol appearing

immedTately next to the subword w equals the first symbol of w . in the example we

may mark some of the loops within the path as follows:

AIB-C-DIBAI~CABDAC[[~BACD. One can see that we havn't marked all the loops. A complete

marking without partial overlapping would be the following one:

AIB-CD]BA~C~AC~]BACD. The transformation T 2 as defined next will use a unique

marking of loops within a sequence.

Definition

Let s

step 0 :

step I :

'the transformation T2 for sequences'

be a given x-sequence of a label grammar.

Start at the very left of s , no loops within s are marked.

Find the leftmost unmarked loop within s and mark it. A loop within a

sequence is called leftmost, if there exist no other loop containing a

rule in front of this loop. Thus the leftmost loop is uniquely defined

by the longest prefix of the path which doesn't contain a symbol twice.

249

step 2 :

step 3 :

If in step I no further loop has been found, then do step 3, otherwise

repeat step I.

If for each A e N ali the marked A-loops are d;rectly following each

other (no rule is separating two A-loops) then stop. Otherwise rearrange

the marked loops within the sequence in such a way, that for each A e N

the A-loops are directly following the first one within the relative

order they had before. Repeat step I.

Let us apply the transformation T 2 to the sequence of the previous

Example 'application of T2~

example.

(step O) Let s be the sequence with the path ABCDBACDCABDACBDBACD ,

(step I, step 2) We mark the leftmost loop : A~BACDCABDACBDBACD .

Applying step I and step 2 three times more yields: A~-C-~BA~IACI~BACD

No further loops can be found, so we apply step 3. In this step we have to erase

the B-loop with path BD at the end of the sequence and insert this loop next to the

first B-loop. This yields a sequence with the following path : AFCD~-~BA~C~AB-~ACBACD.

Since we have rearranged the loops we repeat step I. We find another A-loop and mark it:

A~BA[C-DTC~ACD . We pass step 2 and reach step 3 where we find that no re-

arranging is necessary, the stop condition is met and therefore we have finished. The

sequence with the above path is the unique output of the transformation T 2 .

Without proof we state:

Fact 'proR.e.rties ' of the transformation T '
" 2---

T 2 terminates for every input sequence s and the path w of the output sequence

has the following form:
I I 2 2 n n

w = UlV I ... Vk(1)u2v I ... Vk(2)u 3 ... UnV I ... Vk(n)Un+ I

- 0 ~ n (card(N)
- k(i)~ ~o for I ~] ~ n

- u i £ N + for 2 ~ i ~ n+1 , u I E N

i N e - v. ~ for I ~ i ~ n and I (j ~ k(i)
J

- Ig(u.) ~ card(N) for I ~ i (n+1
I

- Ig(v~) ~ card(N) for I ~ i (n, I ~ j k(i)
i I J

Each vj and v m is a path of B.-loopj respectively Bi-loo p, and if i ~ I then

B i ~ B I . If we define max := card(N) .(card(N) + I) for a given label grammar,

then we have I ~ lg(UlU 2 ..° Un+ I) ~ max for the above path of the output

x-sequence T2(s) . Note that rearranging loops within a sequence doesnTt change

the generated lab@l.

We now define 'normal sequences' as the invariants under this transformation.

where:

250

Definition 'normal x-sequence', 'normal derivation'.

Each x-sequence s for which T2(s) is equal to s Itself is called a

'normal x-sequence'. A derivation is called 'normal derivation' if and only

if it is a sequenced derivation, each sequence of which is a normal sequence.

We obtain:

Theorem 'normal derivations are sufficient'

For each label grammar in first normalform the following holds:

LL(G) ~ ~ e X ~ I there exists a normal oC-derivation A 0 ~ ~ ~.

Proof:

We know that it is sufficient to consider only sequenced derivations~

Now suppose s Is a sequenced ~-derivation built up by the sequences Sl, s2,... , s m .

We apply the transformation T 2 to each sequence s i. This gives a new collection of

normal sequences T2(Sl), T2(s2) , ... , T2(s m) . These normal sequences can be com-

posed to the desired normal c~-derivation.

Having defined normal derivations, we can construct a label grammar without ~-rules

equivalent to a given arbitrary label grammar in first normaiform.

Construction ' ~-free label 9radar'

Let G = (N,R,Ao,X) be a label grammar in first normalform.

Define a new alphabet: F := ~ I A ~ N ~ .
-+

= " ~ N + by w:= BIB2"..B n e N Define the operation ' -- ' for each w BIB 2 "B n

let ~:= ~ Let max := card(N).(card(N) + I) as before.

Define sets of rules by:

RI := I (A,x,w~) A--x~w is a x-sequence in G with path v ~ N~ such

that Ig(v) (max and u is obtained from v by deletion

of some (all, no) symbols

R 2 := # (~,X~WlW2~) there exists a rule (B,x,w~)C R I

A-loop A~wIAB in G

R 3 := [2

and there exists an I

and

Note: The sets RI, R2, and R 3 are finite, since each pathlength of the underlying

derivations is bounded by some constant.

The new label grammar G" is finally defined by:

G = (N~, R I ~ R 2~ R3, Ao, X). By definition ~ doesn't contain a ~-rule.

We are now in the position to formulate and prove our main result. Because of the

lack of space we cannot prove it completely, but we are able to present the difficult

part of the proof.

251

Theorem 'we can do without ~-rules ~

Let G be an arbitrary label grammar, then there exists a label grammar

such that LL(~) LL(G) [~ and ~ doesn't contain a rule of

the form (A,~,w) .

Proof:

For the given label grammar G we construct a label grammar in first normalform

which generates LL(G) - #A~. Thus without restriction we may assume G to be in first

normalform. For this label grammar G we construct ~ as it is defined in the above

construction. ~ has no ~-rules and it is left to show LL(~) = LL(G).

The proof of LL(~)~ LL(G) follows the idea that each rule of ~ has been con-

structed by derivations within G and is not presented here.

For the proof of the statement LL(G)~ LL(G N) we need some auxiliary notations and

definitions.

Notation 'lists of words'

Let w I, ... , w n~ N ~ be words, then [w I , w n] is called a 'list'. The

= : empty list is denoted by E] . Let i I Ew I w~ and 12 [vl, ... , v m

be lists, then: cons(f1,12) := [w I Wn, v I Vn]

Let I be a list and w be a word, then delete(wtl) denotes the list which is

obtained from the list I by deletion of the first occurence of w in this list. If

I doesn't contain w, then delete(w,l) := I.

Definit.!on 'collection of free loops within normal sequences'

Let s be a normal sequence of the label grammar G = (N,R,Ao,X).

(Recall that N = {Ao, ... , A n }).

F(s) denotes the 'collection of free loops' within s and is defined as follows:

F(s) := (Fo(S) , F1(s) , ... , Fn(S)) , where for each 0 ~ i ~ n, Fi(s) is a

list of words from N defined by:

Fi(s) is the list of all the words v ~ N-l-for which Ai~vA i is a marked

loop within s after applying the transformation T 2. Note s = T2(s). r'~reover

F.(s) contains v as often as the loop Ai~)vA i appears within T2(s)
I

F.(s) thus is the list of words which are created within A.-ioops as additional
I I

sentential forms and which are not empty.

Example

Let us return to our example of a sequence which had the path

ABCDBACDCABDACBDBACD . After applying T 2 we obtained the path

A ~ B A I ~ C ~ A C D which corresponds to the pictural representation of the

sequence s as follows:

252

if we write FA() instead of Fo() using

~. A~,,,~ ' the ordered set N = ~A,B,C,D} of non-

terminals, then FA(S) = [Vl, v2~ , where

B v I Ts that part of the sentential form

which is marked by ~ , and v 2 is the

zjC part marked by ; v I and v 2 are

Z~ ~-" supposed to be nonempty.

~J ~ Since there is no D-loop, the list FD(S)
A

~ B ~ is empty. The other loops are treated similar

~ such that the collection F(s) is of the

form F(s) = ([v1,v2~,[v3,v4-~,[v5~,[]) .

We want to generalize the term 'collection of free loops' to normal derivations

which are compositions of normal sequences. Informally we call a loop A ~=~vA

within a normal sequence of a normal derivation 'free' if no symbol of the word v

is replaced in later steps of the derivation.

Definition 'collection of free loops within normal derivations'

For each normal derivation d the collection of free loops will be denoted by F(d).

Thus if d is a normal sequence, then F(d) coincides with the definition of the

collection of free loops within a sequence.

Now suppose d = (A~--------~ wB) is a normal derivation for which

F(d) = (Fo(d),F1(d) Fn(d)) is defined and suppose

s = (B ~v) is a normal sequence, then for the normal ~x-derivation

x ~ ~wv) the collection of free loops ds := (A~wB x

F(ds) = (Fo(dS),F1(ds) , ... ,Fn(dS)) is defined as follows:

Case I: The symbol B of the sentential form wB is not created by any free loop

within the normal derivation d. In other words: no word u from the lists

F.(d) that form F(d) contains the symbol B. For all 0 ~ i ~ n F.(ds) is
I I

then defined by: Fi(ds) := cons(Fi(d),Fi(s)) .

253

Case 2: The symbol B is created within some free loop, i.e. there exists an index

I, 0 ~ I ~ n such that the list Fl(d) contains a word u , which in turn

contains the symbol B. Let I be the smallest index of This kind and let

u be the first word in the list Fl(d) , which contains the symbol B.

Then:
F.(ds) := cons(F.(d),F.(s)) for all 0 ~ i ~ n, i = I .

I I i

Fi(ds) := cons(delete(u,Fl(d)) , Fl(S))

We now define a transformation T on normal derivations as follows:
3

Definition 'the T 3 transformation to delete free loops'

Let d be a normal derivation, then T3(d) denotes exactly that normal derivation

which is obtained by:

(i) deletion of all free loops within d.

(ii) deletion of all the loops A~*A within d.

The term 'deletion of a loop' should be understood as follows:

If A~uB~uvB ~ uvw is a normal derivation and B~vB is a free

loop within this derivation d, i.e. F(d) contains v, then

A uB uw is the derivation after deletion of the free loop B~vB.

Clearly T3(d) is a normal derivation which doesn't have free loops. If d

normal sequence, then T3(d) is a sequence, the pathlength of which is at most

This follows from the fact about T2(d). Moreover if d = (A~w) is a normal

derivation, then
T3(d) (A~----------~v) where q3U(w) = qy(v) + ~-~j~(u) ,

the sum is taken over all the words u which are

contained in the list F(d). (' u in F(d) ' for short!)

isa

max .

We now prove the following statement:

Statement

Let G and ~" as in the construction.

if d = (A ~=~==)w) is a normal derivation in G, then there exists a derivation
_

A~vu in G such that the following holds:

(i) qj~(w) = qJ/(v) + ~-~(v') , v' in F(d).

(ii) ~ contains the symbol ~. exactly once iff the list F.(d) is
I i

not the empty list.

if this statement is correct, then for each normal derivation A ~ in G

there exists a derivation A ~ in G, since terminating derivations in G do

have only empty lists Fi(d). (Each symbol, generated in some free loop has to be re-

placed in some further step of the derivation.)

254

N

Since normal derivations are sufficient to describe LL(G) we have LL(G)~ LL(G)!

We will prove the statement by induction over the number of normal sequences that

form the normal derivations in G.

Basic step:

Suppose s = (Aj x >w) is a normal sequence in G. Then

is a sequence with pathlength at most max. By definition of

we find a rule (Ao,X,V~) e R I such that A-i is contained in

the list F.(s) is not empty.
I

t!

T3(s) = (Ao x~V)

R I in the construction

exactly once iff

This follows from the fact that for free A-loops, even after deletion, the symbol

remains on the path of the sequence. Moreover ~P(w) = qy(v) + S~)M(v')

in F(s), is true by definition of the transformation T 3 .

nduction hypothesis:

The statement is true for all normal derivations d = (A~w)

are composed by at most k sequences, i.e. Ig(o() # k .

in G , which

Induction step:

Let ds = (Ao ~==~==~wiAi~>WlW2 __ __) be a normal derivation in G such that

d = (Ao ~==~=~wiA i _) is a normal derivation composed by k sequences and

s = (A i x ~w2) is a normal sequence.

We have to distinguish two cases:

Case I:

The symbol A i within the sentential form wiA i is not created in any free loop

of d.

From the induction hypothesis we know that there exists a derivation in ~ of the

form Ao==~=~ vIAi~1 , where ~(wiA i) = ~(viA i) ÷ S~JV(v ')
v' in F(d)

Since Ai===~=>x w 2 is a normal sequence there exists a rule (compare with the basic

step) (Ai,XpV2~2) such that ~/(w 2) = ~J/(v 2) + f~K(v I)
v' in F(s)

and u--~ contains the symbol Aj exactly once iff

u- 7 doesn't contain the symbol ~ and Fi(s) is not empty or

F.(d) is empty and F.(ds) is not empty.
J J

(Note, that u 2 may be chosen as an arbitrary subword of the underlying path!)

The derivation Ao===~e/~ viAiu-11 in G and the rule (Ai,x,v2E 2) of G

can now be composed to the derivation

A o / v l A i u l ~ v l v 2 u l u 2

This derivation fullfills the statement, since:

255

q~M(WlW 2) = ~(w I) + ~J#(w 2) = "~(v I) + ~I/(v')
v' in F(d)

y(v 2) + ~qY(v')
v' in F(s)

= ~Y(VlV 2) + ~1#Z(v')
v ~ in F(ds)

This last equation follows from the definition of F(ds) case I.

Moreover ~i-u2 contains the symbol JA-~ only if F.(ds) is not empty.
J

contained in "Q-IT2 then it is contained exactly once: either in u'-1 if

free A.-loopj ,or in ~ if s has a free A.-loopj and d doesn't.

If A. is
J

d has a

case 2:

The symbol A i of ds = (Ao~WiAi~)WlW 2)

of d.

By definition of F(ds)

Fi(ds) = f

is created within some free loop

we have:

cons(Fi(d),Fi(s)) for all i # I

cons(delete(uAi,Fi(d)) , Fi(s)) for i = I , where

uA i is the first word in the list Fl(d) which contains

the symbol AiJ moreover I is the smallest index possible.

From this we infer:

v T in F(ds) v' in F(d) v' in F(s)

From the induction hypothesis we know the existence of a derivation in G :

Ao~VlU-~A I such that:

 # wiA i) ÷ S
v' in F(d)

A I is contained within the sentential form v1~-iA I since the ITst Fl(d) is not

empty (at least contains uA.).

Since uA i is in the list Fl(d) of free Al-lOops , we know that there exists a

derivation AI .~uAIA i in G with pathleng?h at most card(N).

Since A i x~W 2 is a sequence, there exists a rule (Ai,x,v2~-2) in R I such that:

(~e~) ~lJ(W2) = ~y(v 2) + ~ ~(v')
v' in F(s)

and u 2 contains symbols from the path of this derivation. We will determine u--2

Iater.

Therefore we can find a rule (A-~,xuv2~) ~ R 2 and a rule (A--l,X, UV2~-2A-- I) ~ R 3 .

We may combine the ~C-derivation Ao~V171A I in G' with each of this ruleso

This results in two different derivations ;

A ~ ~ (a) o~VlUiAl~VlUlUV2U 2 and

(b) ,

256

For each of this derivations the property (i) from the statement is true~ as can

be seen by:

"~(w 1) + y (w 2) = R.~(v 1) - "VjM(Ai) + , ~ lY (v ') +
v' in F(d)

= qjV(v I) - qjP(A i) + ~ "~ (v ') + qJjV(v 2) + , ~ - y (v ')
v T in F(d) v v in F(s)

= &Y(v I) + q~(v 2) + ~ ~J/(v') + 7(uA i) - ~V(A i)
v' in F(ds)

ly(v I) + ~y(V 2) + ~/#(u) + ~ q#S(v')
v' in F(ds)

o ~(viv2u) + ~ ~(v')
v' in F(ds)

qJ/(w 2) , using ~

, using @~)

, using (~

We now have

(resp. ~I-E2~I

empty.This can

In the case

Suppose F.(d)
J

exactly once.

empty, then

m ~

to choose derivation (a) or (b) and to find u--9 such that UlU 2
) contains the symbol ~ exactly once iff the list F.(ds) is not

J J
be done as follows:

j # I F.(ds) is not empty iff F.(d) or
J J

is not empty, then by induction hypothesis

Therefore ~ can be chosen not to contain

F.(s) is not empty and by definition of R I

F.(s is not empty.
J
u~ contains the symbol Aj

A-j. Suppose Fj(d) is

we can find ~-~ such that

the symbol Aj. is contained exactly once. This defines u-- 2 for all symbols A.j ~A-II "

In the case j = I things are different. Since Fl(d) at least contains the word

uAi, the list Fl(d) is not empty. Now if Fl(s) is empty two subcases are possible:

(I) Fl(dS) is empty, since uA i is the only word within this list. We can

choose the derivation (a) using the rule (~-l,X,UV2~) E R 2 .

(2) Fl(ds) is not empty. We then use the rule (Tl,x,uv2u2~ I) ~ R 3 and

derivation (b),

In both subcases the property (ii) of the statement is fullfiiled.

If Fl(S) is not empty, then F(ds) is not empty and as in (2) we use derivation (b).

Since we considered all possibilities we have proven the induction step. By induction

the statement is proven for all normal derivations in G and therefore the inclusion

LL(G) c LL('~) holds true.

As a corollary of our main theorem one may show the following normalform for

label grammars. The proof can be done using induction over the length of derivations

and is omitted.

Corollary 'normalform for label ,grammars'

For each label language L E ~(~) one can find a label grammar

(i) LL(G) = L - ~ } .

(ii) If (A,x,w) is a rule within G, then x • X and I9(w) ~ 2

G such that

257

Kindly referring to the literature we list some corollaries which can be obtained

using the normalform for label grammars.

Corollary

If L is the homomorphic image of some Szilard language, then L - #~is the image

of a Szilard language under a nonerasing homomorphlsm.

C£rqllary

For each label grammar G it is decidable whether LL(G) is empty or finite.

Corollary

Each infinite label language contains an infinite regular set.

Corollary

Each label language L contains a letter-equivalent context-free anguage L ~.

That is: q~(L) = ~jv(~) .

Corollary

Each label language can be defined by equations using the operatlons:

union, leftconcatenation with a symbol, and shuffle combined with leftconcatenation.

Corollary

The language L I := ~aiba j } i ~ j ~ 0 ~ is a label language, whereas

the language L 2 := ~ aiba i I i ~0 ~ cannot be generated by a label grammar.

Literature

(74a) M.H6pner, 'Uber den Zusammenhang yon SzilardsDrachen und Matrixgrammatiken',
Inst.f.lnformatik,Univ. Hamburg, Bericht Nr. 12 (1974).

(74b) M.H6pner,

(76) M.H6pner/
M.Opp

(77)

(74)

'Eine Charakterlsierung der Szilardsprachen und ihre Verwendung
als Steuersprachen',Lect. Notes in Comp. Sc., 26 (1974).

'About three equational classes of languages built up by shuffle
operations', MFCS 76, Lect. Notes in Comp.Sc., 45 (1976).

M.H6pner/ 'Renaming and erasing in Szilard languages' , Inst.f. lnformatik,
M.Opp Univ. Hamburg, to be published.

M.Penttonen 'On derivation languages corresponding to context-free grammars'
Acta Informatica, 3 (1974).

