Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 474))

Abstract

The present contribution focuses on the problem of mechanical response of the composite ceramic material containing internal structure. This initial internal structure of the material consists of: grains, intergranular layers, initial defects (like porosity or micro-cracks) and initial reinforcement. During deformation process the initial structure of the material changes (evolves) due to development of dislocation bands, local stress concentration and further nucleation of microdefects, their growth into mesocracks and finally to macrocracks leading to the failure of the material. This contribution describes all phases of deformation process of polycrystalline of composite ceramic material including phenomena governing changes of internal structure of the material like: nucleation, growth of defects. In particular to the description of the material response including internal damage process, the micromechanical approach will be used by application of averaging procedures. In order to show local stress concentrations the Finite Element Analysis (FEA) will be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach, H., Becker, W. eds (2003) Modern Trends in Composite Laminates Mechanics, CISM Courses and and Lectures no. 448, Wien-New York: Springer Verlag.

    MATH  Google Scholar 

  • Bahr, H.A., Balke, H., Fett, T., Hofinger, L, Kirchhoff, G., Munz, D., Neubrand, A., Semenov, A.S., Weiss, H.J., (2004) Cracks in graded materials, Mat. Science and Engineering A (accepted for publication)

    Google Scholar 

  • Becker, H., Tschudi, T., Neubrand, A., Spatially (2001) Resolved Thermal Diffusivity Measurements for Functionally Graded Materials. In: Functionally Graded Materials 2000, Ceramic Transactions 114, American Ceramic Society, Westerville, Ohio, 1571–578.

    Google Scholar 

  • Boccaccini, A.R., (1998) Influence of Stress Concentrations on the Mechanical Property-Porosity Correlation in Porous Materials. J. Mat. Sci. Let. 17:1273–75.

    Article  Google Scholar 

  • Bogy, D.B. (1970) On the problem of edge-bonded elastic quarter planes loaded at the boundary, Int. Journal of Solids and Structures 6,1287–1313.

    Article  MATH  Google Scholar 

  • Davidge, R.W., (1979) Mechanical behaviour of ceramics, Cambridge Univ. Press.

    Google Scholar 

  • Dröschel, M., Oberacker, R., Hoffman, M.J., Schaller, W., Yang, Y.Y., Munz, D. (1999) Silicon Carbide Evaporator Tubes with Porosity Gradient Designed by Finite Element Calculations In Functionally Graded Materials, Proceedings of the 5th International Symposium on FGM, W.R. Kaysser ed., Trans Tech Publications, Schweiz, 820–825.

    Google Scholar 

  • Erdogan, F., Wu, B.H., (1996) Crack problems in FGM layers under thermal stresses. J. Thermal Stress:237–265.

    Google Scholar 

  • Espinosa, H.D., Zavattieri, P.B. (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials, Part I: Theory and numerical implementation. Mech. Materials 35:333–364.

    Article  Google Scholar 

  • Espinosa, H.D., Zavattieri, P.D. (2003) A grain level model for study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples, Mech. Materials 35:365–394.

    Article  Google Scholar 

  • Fett, T. (2001) Mixed-mode stress intensity factors for partially opened cracks. Int. J. Fracture 111:L67–L72

    Article  Google Scholar 

  • Fett, T., Munz, D. (1997) Stress intensity factors and weight Junctions, Computational Mechanics Publications, Southampton, UK.

    Google Scholar 

  • Fett, T., and Munz, D. (1999) Mechanical Properties, Failure Behaviour, Materials Selection, Ceramics, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Flinn, B.D., Bordia, R.K., Zimmermann, A., and Roedel, J. (2000) Evolution of Defect Size and Strenght of Porous Alumina during Sintering, J. Am. Ceram. Soc. 20:2561–68.

    Article  Google Scholar 

  • Hu, M.S., Thouless, M.D., Evans, A.G. (1988) The decohesion of thin films from brittle substrates. Acta Metall. 36:1301–1307.

    Article  Google Scholar 

  • Hutchinson, J.W., Suo, Z., (1991) Mixed mode cracking in Layered Materials. Adv. Appl. Mech. 29:63–191.

    Google Scholar 

  • Ishizaki, K., Komarneni, S., and Nanko, M. (1998) Porous Materials: Process Technology And Applications, Materials Technology Series, Kluwer Academic Publishers.

    Google Scholar 

  • Itoh, Y., Kashiwaya, H. (1992) Residual stress characteristics of FGMs. J. Ceram. Soc. Jap. 100: 476–481.

    Google Scholar 

  • Jayaseelan, D.D., Kondo, N., Brito, M.E., and Ohji, T. (2002) High-Strength Porous Alumina Ceramics by Pulse Electric Current Sintering Technique J. Am. Ceram. Soc. 85: 267–69.

    Article  Google Scholar 

  • Jeulin, D., and Ostoja-Starzewski, M., eds. (2001) Mechanics of Random and Multiscale Microstructures, CISM Courses and and Lectures no. 430, Wien-New York: Springer Verlag.

    MATH  Google Scholar 

  • Jin, Z.H., Batra, R. (1996) Stress intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. J. Thermal Stress 19:317–339.

    Google Scholar 

  • Kachanov, M. (1993) Elastic Solids with Many Cracks and Related Problems, Advances in Appl. Mech. 30:259–445.

    Google Scholar 

  • Kachanov, M. (1993) On The Effective Moduli of Solids With Cavities and Cracks. Int. J. Fracture. 59: R17–R21.

    Google Scholar 

  • Kachanov, M., Sevostianov, I., Shafiro, B., (2001) Explicit cross-property correlations for porous materials with anisotropic microstructures, J. Mech. Phys. Solids 49:1–25

    Article  MATH  MathSciNet  Google Scholar 

  • Krajcinovic, D. (1989) Damage Mechanics, Mech. Materials 8:117–197.

    Article  Google Scholar 

  • Lam, D.C.C., Lange, F.F., and Evans, A.G. (1994) Mechanical Properties of Partially Dense Alumina Produced from Powder Compacts. J. Am. Ceram. Soc., 77:2113–17.

    Article  Google Scholar 

  • Nanjangud, S.C., Brezny, R., and Green, D.J., (1995) Strenght and Young’s Modulus Behaviour of a Partially Sintered Porous Alumina. J. Am. Ceram. Soc, 78: 266–68.

    Article  Google Scholar 

  • Nemat-Nasser, S., and Horii, M., (1993) Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier Sci. Publ.

    Google Scholar 

  • Nemat-Nasser, S., and Obata, M. (1988) A Microcrack Model of Dilatancy in Brittle Materials. J. Appl. Mech. 55: 24–35.

    Article  Google Scholar 

  • Neubrand, A., Chung, T.J., Rödel, J., Steffler, E.D., Fett, T. (2002) Residual Stresses in Functionally Graded Plates. J. Mater. Res. 17: 2912–2920.

    Google Scholar 

  • Neubrand, A., Chung, T.-J., Lucato, S., Fett, T., Rödel, J. (2004) R-curve behaviour of functionally graded composites. J. Am. Cer. Soc. (in review).

    Google Scholar 

  • Noda, N. (1999) Thermal stresses in functionally graded materials. J. Thermal Stress 22:477–512.

    Article  MathSciNet  Google Scholar 

  • Ostrowski, T., and RÅ‘del, J. (1999) Evolution of Mechanical Properties of Porous Alumina during Free Sintering and Hot Pressing. J. Am. Ceram. Soc. 82:3080–86.

    Article  Google Scholar 

  • Owen, D.R.J., Hinton E. (1980) Finite Elements in Plasticity, Theory and Practice, Pineridge Press Ltd. Swansea, UK.

    MATH  Google Scholar 

  • Pampuch, R., (1988) Ceramic Materials. An Outline of Inorganic-Nonmetallic Materials Science, Polish State Scientific Press, Warsaw, (in Polish).

    Google Scholar 

  • Perzyna, P. (1971) Thermodynamic Theory of Viscoplaticity, in Advances in Applied Mechanics, Academic Press, New York, 11.

    Google Scholar 

  • Ponte Castañeda, P., and Suquet, P., (1998) Nonlinear composites. Adv. Appl. Mech. 34:171–302.

    Article  Google Scholar 

  • Pordoen, T., Dumont, D., Deschamps, A., Brechet. Y. (2003) Grain boundary versus transgranular ductile failure. J. Mech. Phys. Solids 51: 637–665.

    Article  Google Scholar 

  • Raiser, G.F., Wise, J.L., Clifton, R.J., Grady, D.E., Cox D.E. (1994) Plate impact response of ceramics and glasses, J. Appl. Phys 75:3862-.

    Article  Google Scholar 

  • Ravichandran, K.S. (1995) Thermal residual stresses in a FGM system. Mat. Sci. and Eng A201: 269–276.

    Article  Google Scholar 

  • Rice, R.W. (1998) Porosity of Ceramics. Marcel Dekker, New York

    Google Scholar 

  • Sadowski, T. (1994) Modelling of semi-brittle MgO Ceramics Behaviour under Compression Mech. Materials, 18:1–16.

    Article  Google Scholar 

  • Sadowski, T., Boniecki, M., Librant, Z., and Ruiz, C. (1997) Fracture process of monolithic polycrystalline ceramics (Al2O3 and MgO) under quasi-static and dynamic loading. Proceedings of Brittle Matrix Composites, 5. Edited by A. Brandt, V.C. Li and I.H. Marshall, BIGRAF and Woodhead Publ., Warsaw, 567–576

    Google Scholar 

  • Sadowski, T. (1999) Description of Damage Development and Limit States of Ceramic Materials, Technical Univ. of Lublin Press, (in Polish).

    Google Scholar 

  • Sadowski, T., Samborski, S. (2003) Modelling of porous ceramics response to compressive loading, J. Am. Cer. Soc. 86:2218–2221.

    Google Scholar 

  • Sadowski, T., Samborski, S. (2003) Prediction of mechanical behaviour of porous ceramics using mesomechanical modeling. Computational Materials Science 28:512–517.

    Article  Google Scholar 

  • Sadowski, T., Neubrand, A. (2003) Thermal shock crack propagation in functionally graded strip. Proceedings of Brittle Matrix Composites, 7. Edited by A. Brandt, V.C. Li and I.H. Marshall, BIGRAF and Woodhead Publ., Warsaw, 81–90.

    Google Scholar 

  • Sadowski, T., Hardy S., Postek, E. (2004) Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension, Computational Materials Science (subjected)

    Google Scholar 

  • Sundaram, S., Clifton, R.J. (1998) The influence of a glassy phase on the high strain rate response of ceramics. Mech. Materials 29:233–251.

    Article  Google Scholar 

  • Suquet, P., ed. (1997) Continuum Micromechanics, CISM Courses and and Lectures no., Wien-New York: Springer Verlag.

    MATH  Google Scholar 

  • Tvergard, V. (1997) Studies of void growth in a thin ductile layer between ceramics. Comput. Mech. 20:186–191.

    Article  Google Scholar 

  • Vasudevan, A., Doherty, R. (1987) Grain boundary ductile fracture in precipitation hardened aluminium alloys. Acta Metall. 35:1193–1219.

    Article  Google Scholar 

  • Yang, Y.Y., Munz, D. (1995) Reduction of the stresses in a joint of dissimilar materials using graded materials as interlayer, Fracture Mechanics 26, ASTM STP 1256, WG. Reuter, J.H. Underwood, J.C. Newman, Jr. (Hrsg.), American Society for Testing and Materials, Philadelphia, 1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Sadowski, T. (2005). Modelling of Damage and Fracture Processes of Ceramic Matrix Composites. In: Sadowski, T. (eds) Multiscale Modelling of Damage and Fracture Processes in Composite Materials. CISM International Centre for Mechanical Sciences, vol 474. Springer, Vienna. https://doi.org/10.1007/3-211-38102-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-211-38102-3_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-29558-8

  • Online ISBN: 978-3-211-38102-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics