Skip to main content

Multiscale Computational Damage Modelling of Laminate Composites

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 474))

Abstract

The main questions discussed here are how to bridge the micro- and mesomechanics of laminates and how this affects the understanding and prediction of localization and final fracture of engineering composite structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboudi, L., Lee, S. W., and Herakowich, C. T. (1988). Three dimensional analysis of laminates with cross cracks. ASME J. Appl. Mech. 55: 389–397.

    Article  MATH  Google Scholar 

  • Allen, D. H., Groves, S. E., and Harris, C. E. (1988). A cumulative damage model for continuous fiber composite laminates with matrix cracking and interply delaminations. In Withcomb, J. D., ed., Composite Materials: Testing and Design. ASTM STP 972, Washington, DC, USA.. 57–80.

    Google Scholar 

  • Allix, O. (1992). Damage analysis of delamination around a hole. In Ladevèze, P., and Zienkiewicz, O. C, eds., New Advances in Computational Structural Mechanics, Elsevier Science Publishers B. V. 411–421.

    Google Scholar 

  • Allix, O. (2002). Interface damage mechanics: application to delamination. In Allix, O., and Hild, R, eds., Continuum Damage Mechanics of Materials and Structures, Elsevier. 295–324.

    Google Scholar 

  • Allix, O., Bahlouli, N., Cluzel, N., and Perret, C. (1996). Modelling and identification of temperature-dependent mechanical behavior of the elementary ply in carbon/epoxy laminates. Comp. Sci. Techn. 56: 883–888.

    Article  Google Scholar 

  • Allix, O., and Deü, J. F. (1997). Delay-damage modeling for fracture prediction of laminated composites under dynamic loading. Engineering Transactions 45: 29–46.

    Google Scholar 

  • Allix, O., Guedra-Degeorges, D., Guinard, S., and Vinet, A. (1999). 3D analysis applied to low-energy impacts on composite laminates. In Masard, T., and Vautrin, A., eds., Proceedings ICCM12T. 282–283.

    Google Scholar 

  • Allix, O., and Johnson, A. (1992). Interlaminar interface modelling for the prediction of laminate delamination. Comp. Sci. Techn.

    Google Scholar 

  • Allix, O., and Ladevèze, P. (2004). Advances in the statics and dynamics of delamination — Special issue. Composite Structures 22: 235–242.

    Article  Google Scholar 

  • Allix, O., Ladevèze, P., and Vitecoq, E. (1994). Modelling and identification of the mechanical behaviour of composite laminates in compression. Comp. Sci. Techn. 51: 35–42.

    Article  Google Scholar 

  • Allix, O., Lévêque, D., and Perret, L. (1998). Interlaminar interface model identification and forecast of delamination in composite laminates. Comp. Sci. Techn. 56: 671–678.

    Article  Google Scholar 

  • Bazant, Z., and Pijaudier-Cabot, G. (1988). Non local damage: continuum model and localisation instability. J. Appl. Mech. 287–294.

    Google Scholar 

  • Belytschko, T., and Lasry, D. (1988). Localisation limiters and numerical strategies softening materials. In Mazars, J., and Bazant, Z. P., eds., Amsterdam: Elsevier. 349–362.

    Google Scholar 

  • Berthelot, J. M.0 (2003). Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber renforced plastic laminates: static and fatigue loading. Appl. Mech. Rev. 56(1): 1–37.

    Article  Google Scholar 

  • Berthelot, J. M., and Le Corre, J. F. (2000). Statistical analysis of the progression of transverse cracking and delamination in cross-ply laminates. Comp. Sci. Techn. 60: 2659–2669.

    Article  Google Scholar 

  • Berthelot, J. M., Leblond, P., El Mahi, A., and Le Corre, J. F. (1996). Transverse cracking of cross-ply laminates, Part 1: Analysis. Composites. 27A: 989–1001.

    Google Scholar 

  • Boniface, L., Smith, P., Bader, M., and Rezaifard, A. (1997). Transverse ply cracking in cross-ply CFRP laminates — Initiation or propagation controlled? J. Comp. Materials. 31: 1080–1112.

    Google Scholar 

  • Crossman, F. W., and Wang, A. S. D. (1982). The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates. In Reisnider, K. L., ed., Damage in Composite Materials, ASTM STP 775. 118–139.

    Google Scholar 

  • Daudeville, L., and Ladevèze, P. (1993). A damage mechanics tool for laminate delamination. Composite Structures. 25: 547–555.

    Article  Google Scholar 

  • Devries, F., Dumontet, H., Duvaut, G., and Léné, F. (1989). Homogenization and damage for composite structures. Int. J. for Numerical Methods in Engineering. 27: 285–298.

    Article  MATH  Google Scholar 

  • Dvorak, G. J., and Laws, N. (1987). Analysis of progressive matrix cracking in composite laminates, II. First ply failure. J. Comp. Materials. 21: 309–329.

    Google Scholar 

  • Espinoza, H. D. (1995). On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation. Int. J. Solids and Structures. 3105–3128.

    Google Scholar 

  • Feyel, F. (2003). A multilevel finite element method (FE 2) to describe the response of highly non-linear structures using generalized continua. Comput. Meth. Appl. Mech. Engrg. 192: 3233–3244.

    Article  MATH  Google Scholar 

  • Fish, J., Sheck, K., Pandheeradi, M, and Shepard, M. S. (1997). Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput. Meth. Appl. Mech. Engrg. 148:53–73.

    Article  MATH  Google Scholar 

  • Fukunaga, H., Chou, T. W., Peters, P. W. M., and Schulte, K. (1984). Probabilistic failure strength analyses of graphite/epoxy cross-ply laminates. J. Comp. Materials. 18: 339–356.

    Google Scholar 

  • Garrett, K. W., and Bailey, J. E. (1977). Multiple transverse fracture in 90° cross-ply laminates of a glass fiber reinforced polyester. J. Mater. Sci. 12: 157–168.

    Article  Google Scholar 

  • Geers, M., Kouznetsova, V., and Brekelmans, W. (2003). Multiscale first-order and second-order computational homogenization of microstructures towards continua. Int. J. for Multiscale Computational Engineering. 1(4): 371–386.

    Article  Google Scholar 

  • Ghosh, S., Lee, K., and Moorthy, S. (1995). Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. J. Solids Structures. 32(1): 27–62.

    Article  MATH  MathSciNet  Google Scholar 

  • Gudmunson, P., and Zang, W. (1993). An analytical model for thermoelastic properties of composite laminates containing transverse matrix cracks. Int. J. Solids Structures. 30: 3211–3231.

    Article  Google Scholar 

  • Guild, F. J., Ogin, S. L., and Smith, P. A. (1993). Modelling of 90° ply cracking in cross ply laminates, including three-dimensional effects. J. Comp. Materials. 27: 646–667.

    Google Scholar 

  • Hashemi, S., Kinloch, A., and Williams, J. (1990). Mechanics and mechanisms of delamination in a poly (ether sulphone)-fiber composite. Comp. Sci. Techn. 37: 429–462.

    Article  Google Scholar 

  • Hashin, Z. (1985). Analysis of cracked laminates: a variational approach. Mech. Mater. 4: 121–136.

    Article  Google Scholar 

  • Hashin, Z. (1985). Analysis of orthogonally cracked laminates under tension. ASME J. Appl. Mech. 4: 121–136.

    Google Scholar 

  • Hashin, Z. (1996). Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids. 44(7): 1129–1145.

    Article  Google Scholar 

  • Herakovich, C. (1998). Mechanics of Fibrous Composites, J. Wiley, ed.

    Google Scholar 

  • Highsmith, A. L., and Reifsnider, K. L. (1982). Stiffness reduction mechanisms in composite laminates. In Reisnider, K. L., ed., Damage in Composite Materials, ASTM STP 775. 103–117.

    Google Scholar 

  • Kouznetsova, V., Geers, M. G. D., and Brekelmans, W. A. M. (2003). Multiscale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. for Numerical Methods in Engineering. 54: 1235–1260.

    Article  Google Scholar 

  • Ladevèze, P. (1983). On an anisotropic damage theory. In Boehler, J. P., ed., Failure Criteria of Structured Media, Report n° 34-LMT-Cachan, Balkema. 355–364.

    Google Scholar 

  • Ladevèze, P. (1986). About the damage mechanics of composites. In Bathias, C., and Menkés, D., eds., Comptes-Rendus des JNC5, Paris: Pluralis Publication. 667–683.

    Google Scholar 

  • Ladevèze, P. (1989). About a damage mechanics approach. In Mechanics and Mechanisms of Damage in Composite and Multimaterials, ME P. 119–142.

    Google Scholar 

  • Ladevèze, P. (1992). A damage computational method for composite structures. J. Computer and Structure. 44(1/2): 79–87.

    Article  Google Scholar 

  • Ladevèze, P. (1995). A damage computational approach or composites: Basic aspects and micromechanical relations. Comput. Mech. 8: 142–150.

    Google Scholar 

  • Ladevèze, P. (2000). Modelling and computation until final fracture of laminate composites. In Cardon, A. H., et al., eds., Recent Developments in Durability Analysis of Composite Systems, Balkema. 39–47.

    Google Scholar 

  • Ladevèze, P., Allix, O., Deü, J. F., and Lévêque, D. (2000). A mesomodel for localisation and damage computation in laminates. Comput. Meth. Appl. Mech. Engrg. 1832: 105–122.

    Article  Google Scholar 

  • Ladevèze, P., Allix, O., Gornet, L., Lévêque, D., and Perret, L. (1998). A computational damage mechanics approach for laminates: Identification and comparison with experimental results. In Voyiadjis, G. Z., Wu, J. W., and Chaboche, J. L., eds., Damage Mechanics in Engineering Materials, Amsterdam: Elsevier. 481–500.

    Google Scholar 

  • Ladevèze, P., and Le Dantec, E. (1992). Damage modeling of the elementary ply for laminated composites. Comp. Sci. Techn. 43(3): 257–267.

    Article  Google Scholar 

  • Ladevèze, P., Loiseau, O., and Dureisseix, D. (2001). A micro-macro and parallel computational strategy for highly heterogeneous structures. Int. J. for Numerical Methods in Engineering. 52: 121–138.

    Article  Google Scholar 

  • Ladevèze, P., and Lubineau, G. (2001). On a damage mesomodel for laminates: micro-meso relationships, possibilities and limits. Comp. Sci. Techn. 61(15): 2149–2158.

    Article  Google Scholar 

  • Ladevèze, P., and Lubineau, G. (2001). On a damage mesomodel for laminates: micromechanics basis and improvement. Mech. Materials. 35: 763–775.

    Article  Google Scholar 

  • Ladevèze, P., and Lubineau, G. (2002). An enhanced mesomodel for laminates based on micromechanics. Comp. Sci. Techn. 62: 533–541.

    Article  Google Scholar 

  • Ladevèze, P., Lubineau, G., and Marsal, D. (2004). Towards a bridge between the micro-and the mesomechanics of delamination for laminated composites. Comp. Sci. Techn. Manuscript submitted for publication.

    Google Scholar 

  • Ladeveze, P., and Nouy, A. (2003). On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput. Meth. Appl. Mech. Engrg. 192: 3061–3087.

    Article  MATH  MathSciNet  Google Scholar 

  • Lagattu, F., and Lafarie-Frenot, M. (2000). Variation of PEEK matrix crystallinity in APC-2 composite subjected to large shearing deformation. Comp. Sci. Techn. 60: 605–612.

    Article  Google Scholar 

  • Laws, N., and Dvorak, G. J. (1988). Progressive transverse cracking in composite laminates. J. Comp. Marerials. 22: 900–916.

    Google Scholar 

  • Li, D. S., and Wisnom, M. (1997). Evaluating Weibull parameters for transverse cracking in cross-ply laminates. J. Comp. Materials. 31(9): 935–951.

    Google Scholar 

  • Loret, B., and Prevost, J. H. (1990). Dynamic strain localization in elasto-(visco-)plastic solids, Part 1. General formulation and one-dimensional examples. Comput. Meth. Appl. Mech. Engrg. 83: 247–273.

    Article  MATH  Google Scholar 

  • Manders, P. W., Chou, T. W., Jones, F. R., and Rock, J. W. (1983). Statistical analysis of multiple fracture in 079070‡ glass fiber/epoxy resin laminates. J. Mater. Sci. 8: 352–362.

    Google Scholar 

  • Masters, J. E., and Reifsnider, K. L. (1982). An investigation of cumulative damage development in quasi-isotropic graphite/epoxy laminates. In Damage in Composite Materials, ASTM STP 77. 40–62.

    Google Scholar 

  • McCartney, L. N. (1992). Theory of stress transfer in a 0°-90°-0° cross-ply laminate containing a parallel array of transverse cracks. J. Mech. Phys. Solids. 40: 27–68.

    Article  MATH  Google Scholar 

  • McCartney, L. N. (2000). Model to predict effects of triaxial loading on ply cracking in general symmetric laminates. Comp. Sci. Techn. 60: 2255–2279.

    Article  Google Scholar 

  • McCartney, L. N., Schoeppner, G. A., and Becker, W. (2000). Comparison of models for transverse ply cracks in composite laminates. Comp. Sci. Techn. 60: 2347–2359.

    Article  Google Scholar 

  • Nairn, J. A. (1989). The strain energy release rate of composite microcracking: a variational approach. J. Comp. Materials. 23: 1106–1129.

    Google Scholar 

  • Nairn, J. A., and Hu, S. (1992). The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int. J. Fract. 57: 1–24.

    Article  Google Scholar 

  • Nairn, J. A., and Hu, S. (1994). Micromechanics of damage: a case study of matrix cracking. In Talreja, R., ed., Damage Mechanics of Composite Materials, Amsterdam: Elsevier. 187–243.

    Google Scholar 

  • Nairn, J., Hu, S., and Bark, J. (1993). A critical evaluation of theories for predicting microcracking in composite laminates. J. Materials Science. 28: 5099–5111.

    Article  Google Scholar 

  • Needleman, A. (1988). Material rate dependence and mesh sensitivity in localization problems. Comput. Meth. Appl. Mech. Engrg. 67: 69–85.

    Article  MATH  Google Scholar 

  • Nuismer, R. J., and Tan, S. C. (1988). Constitutive relations of a cracked composite lamina. J. Comp. Materials. 22: 306–321.

    Google Scholar 

  • Oden, J., Vemaganti, K., and Moes, N. (1999). Hierarchical modelling of heterogeneous solids. Comput. Meth. Appl. Mech. Engrg. 172: 2–25.

    Article  MathSciNet  Google Scholar 

  • Ogin, S. L., Smith, P. A., and Beaumont, P. W. R. (1985). Matrix cracking and stiffness reduction during the fatigue of a (0/90)s GFRP laminate. Comp. Sci. Techn. 22: 23–31.

    Article  Google Scholar 

  • Pagano, N., Schoeppner, G., Kim, R., and Abrams, F. (1998). Steady-state cracking and edge effect in thermo-mechanical transverse cracking of cross-ply laminates. Comp. Sci. Techn. 58: 1811–1825.

    Article  Google Scholar 

  • Parvizi, A., Garrett, K. W., and Bailey, J. E. (1978). Constrained cracking in glass fiber-reinforced epoxy cross-ply laminates. J. Mater. Sci. 13: 195–201.

    Article  Google Scholar 

  • Renard, J., and Jeggy, T. (1989). Modélisation de la fissuration transverse dans les matériaux composites carbone/résine. In Groupe de Réflexion sur I’Endommagement, Cetim, Senlis.

    Google Scholar 

  • Schoeppner, G., and Pagano, N. (1998). Stress fields and energy release rates in cross-ply laminates. Int. J. Solids and Structures. 35(11): 1025–1055.

    Article  MATH  Google Scholar 

  • Selvarathimam, A., and Weitsman, J. (1999). A shear-lag analysis of transverse cracking and delamination in cross-ply carbon-fiber/epoxy composites under dry, saturated and immersed fatigue conditions. Comp. Sci. Techn. 59:2115–2123.

    Article  Google Scholar 

  • Slyuis, L. J., and De Borst, R. (1992). Wave propagation and localisation in a rate-dependent cracked medium: Model formulation and one dimensional examples. Int. J. Solids and Structures. 29: 2945–2958.

    Article  Google Scholar 

  • Takeda, N., and Ogihara, S. (1994). Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates. Comp. Sci. Techn. 52: 309–318.

    Article  Google Scholar 

  • Talreja, R. (1980). Stiffness based fatigue damage characterization of fibrous composites. In Bunsell, A. R., et al., eds., Advances in Composite Materials, Oxford: Pergamon Press. 2: 1732–1739.

    Google Scholar 

  • Talreja, R. (1985). Transverse cracking and stiffness reduction in composite laminates. J. Comp. Materials. 19:355–375.

    Google Scholar 

  • Tong, J., Guild, F. J., Ogin, S. L., and Smith, P. A. (1997). On matrix crack growth in quasi-isotropic laminates, I. Experimental investigations. Comp. Sci. Techn. 57: 1527–1535.

    Article  Google Scholar 

  • Varna, J., and Berglund, L. A. (1992). A model for prediction of the transverse cracking strain in crosss-ply laminates. J. Reinf. Plast. Comp. 11: 708–728.

    Google Scholar 

  • Wang, A. S. D., Chou, P. C., and Lei, S. (1984). A stochastic model for the growth of matrix cracks in composite laminates. J. Comp. Materials. 18: 239–254.

    Google Scholar 

  • Wang, A. S. D., and Crossman, F. W. (1980). Initiation and growth of transverse cracks and edge delamination in composite laminates, Part 1: An energy method. J. Comp. Materials. 14: 71–87.

    Google Scholar 

  • Yahvac, S., Yats, L., and Wetters, D. (1991). Transverse ply cracking in toughened and untoughened graphite/epoxy and graphite/polycyanate cross-ply laminates. J. Comp. Materials. 25: 1653–1667.

    Google Scholar 

  • Yang, T., Liu, Y, and Wang, J. (2003). A study of the propagation of an embedded crack in a composite laminate of finite thickness. Composite Structures. 59: 473–479.

    Article  Google Scholar 

  • Zhang, J., Fan, J., and Soutis, C. (1992). Analysis of multiple matrix cracking in [± 0m/90n] composite laminates, Composites, 23: 291–298.

    Article  Google Scholar 

  • Zohdi, T. I., Oden, J. T., and Rodin, G. J. (1996). Hierarchical modeling of heterogeneous bodies. Comput. Meth. Appl. Mech. Engrg. 155: 181–192.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Pierre, L. (2005). Multiscale Computational Damage Modelling of Laminate Composites. In: Sadowski, T. (eds) Multiscale Modelling of Damage and Fracture Processes in Composite Materials. CISM International Centre for Mechanical Sciences, vol 474. Springer, Vienna. https://doi.org/10.1007/3-211-38102-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-211-38102-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-29558-8

  • Online ISBN: 978-3-211-38102-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics