Skip to main content

MDCT in Neurovascular Imaging

  • Chapter
  • First Online:
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 3214 Accesses

Abstract

New generations of multi-detector row CT (MDCT) scanners offer previously unsurpassed options in neurovascular imaging especially for the emergency diagnosis of cerebrovascular diseases.

Comprehensive stroke imaging now typically includes CT angiography and CT perfusion in addition to non-contrast-enhanced CT (NECT). Moreover, modern techniques also enable the retrieval of dynamic CT-angiographic data from the perfusion CT.

CT angiography of the cervicocranial arteries allows the assessment of the location and degree of supraaortic extra- and intracranial stenoses as well as of occlusions of the basilar artery. In addition, intracranial aneurysms can be detected with high sensitivity and specificity.

Cerebrovenous thromboses can be diagnosed with a venous CT angiography of the brain. Even thromboses of small bridging and internal cerebral veins can usually be readily discerned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • (1991) MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet 337(8752):1235–1243

    Google Scholar 

  • (1991) North American Symptomatic Carotid Endarterectomy Trial. Methods, patient characteristics, and progress. Stroke 22(6):711–720

    Google Scholar 

  • Ameri A, Bousser MG (1992) Cerebral venous thrombosis. Neurol Clin 10(1):87–111

    CAS  PubMed  Google Scholar 

  • Anderson GB et al (1999) Computed tomographic angiography versus digital subtraction angiography for the diagnosis and early treatment of ruptured intracranial aneurysms. Neurosurgery 45(6):1315–1320; discussion 1320–1322

    CAS  PubMed  Google Scholar 

  • Ben Hassen W et al (2014) Imaging of cervical artery dissection. Diagn Interv Imaging 95(12):1151–1161

    CAS  PubMed  Google Scholar 

  • Bucek RA et al (2007) Automated CTA quantification of internal carotid artery stenosis: a pilot trial. J Endovasc Ther 14(1):70–76

    PubMed  Google Scholar 

  • Cadena R (2016) Cervical artery dissection: early recognition and stroke prevention. Emerg Med Pract 18(7):1–24

    PubMed  Google Scholar 

  • Campbell BC et al (2013) CT perfusion improves diagnostic accuracy and confidence in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 84(6):613–618

    PubMed  Google Scholar 

  • Casey SO et al (1996) Cerebral CT venography. Radiology 198(1):163–170

    CAS  PubMed  Google Scholar 

  • Chappell ET et al (2003) Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: a meta-analysis. Neurosurgery 52(3):624–631; discussion 630–631

    PubMed  Google Scholar 

  • Chen CJ et al (2004) Multisection CT angiography compared with catheter angiography in diagnosing vertebral artery dissection. AJNR Am J Neuroradiol 25(5):769–774

    PubMed  PubMed Central  Google Scholar 

  • Crawford CR, King KF (1990) Computed tomography scanning with simultaneous patient translation. Med Phys 17(6):967–982

    CAS  PubMed  Google Scholar 

  • Dawkins AA et al (2007) Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures. Neuroradiology 49(9):753–759

    CAS  PubMed  Google Scholar 

  • de Monye C et al (2006) Optimization of CT angiography of the carotid artery with a 16-MDCT scanner: craniocaudal scan direction reduces contrast material-related perivenous artifacts. AJR Am J Roentgenol 186(6):1737–1745

    PubMed  Google Scholar 

  • Demel SL, Broderick JP (2015) Basilar occlusion syndromes: an update. Neurohospitalist 5(3):142–150

    PubMed  PubMed Central  Google Scholar 

  • Dinkel J et al (2015) Technical limitations of dual-energy CT in neuroradiology: 30-month institutional experience and review of literature. J Neurointerv Surg 7(8):596–602

    PubMed  Google Scholar 

  • Dorn F et al (2012) Order of CT stroke protocol (CTA before or after CTP): impact on image quality. Neuroradiology 54(2):105–112

    PubMed  Google Scholar 

  • Emberson J et al (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ertl-Wagner B et al (2008) Cranial CT with 64-, 16-, 4- and single-slice CT systems-comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols. Eur Radiol 18(8):1720–1726

    PubMed  Google Scholar 

  • Ertl-Wagner BB et al (2006) Relative value of sliding-thin-slab multiplanar reformations and sliding-thin-slab maximum intensity projections as reformatting techniques in multisection CT angiography of the cervicocranial vessels. AJNR Am J Neuroradiol 27(1):107–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ertl-Wagner BB et al (2005) Prospective, multireader evaluation of image quality and vascular delineation of multislice CT angiography of the brain. Eur Radiol 15(5):1051–1059

    PubMed  Google Scholar 

  • Ferro JM et al (2004) Prognosis of cerebral vein and dural sinus thrombosis: results of the international study on cerebral vein and dural sinus thrombosis (ISCVT). Stroke 35(3):664–670

    PubMed  Google Scholar 

  • Flis CM et al (2007) Carotid and vertebral artery dissections: clinical aspects, imaging features and endovascular treatment. Eur Radiol 17(3):820–834

    PubMed  Google Scholar 

  • Flohr T et al (2002a) New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Rofo 174(8):1022–1027

    CAS  PubMed  Google Scholar 

  • Flohr T et al (2002b) New technical developments in multislice CT—part 1: approaching isotropic resolution with sub-millimeter 16-slice scanning. Rofo 174(7):839–845

    CAS  PubMed  Google Scholar 

  • Flohr TG et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    PubMed  Google Scholar 

  • Goldmakher GV et al (2009) Hyperdense basilar artery sign on unenhanced CT predicts thrombus and outcome in acute posterior circulation stroke. Stroke 40(1):134–139

    PubMed  Google Scholar 

  • Hacke W et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 274(13):1017–1025

    CAS  PubMed  Google Scholar 

  • Hacke W et al (1988) Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 19(10):1216–1222

    CAS  PubMed  Google Scholar 

  • Hacklander T et al (2006) Agreement of multislice CT angiography and MR angiography in assessing the degree of carotid artery stenosis in consideration of different methods of postprocessing. J Comput Assist Tomogr 30(3):433–442

    PubMed  Google Scholar 

  • Havla L et al (2015) Wavelet-based calculation of cerebral angiographic data from time-resolved CT perfusion acquisitions. Eur Radiol 25(8):2354–2361

    PubMed  Google Scholar 

  • Hoh BL et al (2004) Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery 54(6):1329–1340; discussion 1340–1322

    PubMed  Google Scholar 

  • Hopyan J et al (2010) Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology 255(1):142–153

    PubMed  Google Scholar 

  • Hsu CC et al (2016) Principles and clinical application of dual-energy computed tomography in the evaluation of cerebrovascular disease. J Clin Imaging Sci 6:27

    PubMed  PubMed Central  Google Scholar 

  • Jayakrishnan VK et al (2003) Subtraction helical CT angiography of intra- and extracranial vessels: technical considerations and preliminary experience. AJNR Am J Neuroradiol 24(3):451–455

    PubMed  PubMed Central  Google Scholar 

  • Johnson TR et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    PubMed  Google Scholar 

  • Kalender WA et al (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176(1):181–183

    CAS  PubMed  Google Scholar 

  • Kaufmann TJ et al (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243(3):812–819

    PubMed  Google Scholar 

  • Kloska SP et al (2004) Acute stroke assessment with CT: do we need multimodal evaluation? Radiology 233(1):79–86

    PubMed  Google Scholar 

  • Koenig M et al (1998) Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology 209(1):85–93

    CAS  PubMed  Google Scholar 

  • Kunz WG et al (2016) Detection of single-phase CTA occult vessel occlusions in acute ischemic stroke using CT perfusion-based wavelet-transformed angiography. Eur Radiol 27(6):2657–2664

    PubMed  Google Scholar 

  • Lafitte F et al (1997) MRI and MRA for diagnosis and follow-up of cerebral venous thrombosis (CVT). Clin Radiol 52(9):672–679

    CAS  PubMed  Google Scholar 

  • Lee VH et al (2006) Incidence and outcome of cervical artery dissection: a population-based study. Neurology 67(10):1809–1812

    PubMed  Google Scholar 

  • Lell MM et al (2006) New techniques in CT angiography. Radiographics 26(Suppl 1):S45–S62

    PubMed  Google Scholar 

  • Lell MM et al (2009) Cranial computed tomography angiography with automated bone subtraction: a feasibility study. Investig Radiol 44(1):38–43

    Google Scholar 

  • Linn J et al (2007) Diagnostic value of multidetector-row CT angiography in the evaluation of thrombosis of the cerebral venous sinuses. AJNR Am J Neuroradiol 28(5):946–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morhard D et al (2008) Value of automatic bone subtraction in cranial CT angiography: comparison of bone-subtracted vs. standard CT angiography in 100 patients. Eur Radiol 18(5):974–982

    PubMed  Google Scholar 

  • Morhard D et al (2013) Optimal sequence timing of CT angiography and perfusion CT in patients with stroke. Eur J Radiol 82(6):e286–e289

    CAS  PubMed  Google Scholar 

  • Napel S et al (1993) STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr 17(5):832–838

    CAS  PubMed  Google Scholar 

  • Pfefferkorn T et al (2006) Diagnosis and therapy of basilar artery occlusion. Nervenarzt 77(4):416–422

    CAS  PubMed  Google Scholar 

  • Puchner S et al (2009) Multidetector CTA in the quantification of internal carotid artery stenosis: value of different reformation techniques and axial source images compared with selective carotid arteriography. J Endovasc Ther 16(3):336–342

    PubMed  Google Scholar 

  • Puetz V et al (2008) Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke 3(4):230–236

    PubMed  Google Scholar 

  • Rubin GD et al (1995) Current status of three-dimensional spiral CT scanning for imaging the vasculature. Radiol Clin N Am 33(1):51–70

    CAS  PubMed  Google Scholar 

  • Ryu CW et al (2006) Acquisition of MR perfusion images and contrast-enhanced MR angiography in acute ischaemic stroke patients: which procedure should be done first? Br J Radiol 79(948):962–967

    CAS  PubMed  Google Scholar 

  • Santalucia P (2012) Extended infarcts in the vertebrobasilar territory. Front Neurol Neurosci 30:176–180

    PubMed  Google Scholar 

  • Schievink WI (2001) Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med 344(12):898–906

    CAS  PubMed  Google Scholar 

  • Silvennoinen HM et al (2007) CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angiography. AJNR Am J Neuroradiol 28(1):97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan JC et al (2007) Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 61(6):533–543

    PubMed  Google Scholar 

  • Tipper G et al (2005) Detection and evaluation of intracranial aneurysms with 16-row multislice CT angiography. Clin Radiol 60(5):565–572

    CAS  PubMed  Google Scholar 

  • Tomandl BF et al (2003) Comprehensive imaging of ischemic stroke with multisection CT. Radiographics 23(3):565–592

    PubMed  Google Scholar 

  • Uwatoko T et al (2007) Carotid artery calcification on multislice detector-row computed tomography. Cerebrovasc Dis 24(1):20–26

    PubMed  Google Scholar 

  • Vertinsky AT et al (2008) Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol 29(9):1753–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villablanca JP et al (2002) Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am J Neuroradiol 23(7):1187–1198

    PubMed  PubMed Central  Google Scholar 

  • Voetsch B et al (2004) Basilar artery occlusive disease in the New England Medical Center posterior circulation registry. Arch Neurol 61(4):496–504

    PubMed  Google Scholar 

  • von Kummer R et al (2001) Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology 219(1):95–100

    Google Scholar 

  • Wintermark M (2005) Brain perfusion-CT in acute stroke patients. Eur Radiol 15(Suppl 4):D28–D31

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Ertl-Wagner MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Figueiredo, G.N., Ertl-Wagner, B. (2017). MDCT in Neurovascular Imaging. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_150

Download citation

  • DOI: https://doi.org/10.1007/174_2017_150

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics