Skip to main content

Delta Opioid Receptors and Cardioprotection

  • Chapter
  • First Online:
Delta Opioid Receptor Pharmacology and Therapeutic Applications

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 247))

Abstract

The opioid receptor family, with associated endogenous ligands, has numerous roles throughout the body. Moreover, the delta opioid receptor (DORs) has various integrated roles within the physiological systems, including the cardiovascular system. While DORs are important modulators of cardiovascular autonomic balance, they are well-established contributors to cardioprotective mechanisms. Both endogenous and exogenous opioids acting upon DORs have roles in myocardial hibernation and protection against ischaemia-reperfusion (I-R) injury. Downstream signalling mechanisms governing protective responses alternate, depending on the timing and duration of DOR activation. The following review describes models and mechanisms of DOR-mediated cardioprotection, the impact of co-morbidities and challenges for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 16 July 2019

    The book was inadvertently published with error in the following chapters.

References

  • Abdul Y, Akhter N, Husain S (2013) Delta-opioid agonist SNC-121 protects retinal ganglion cell function in a chronic ocular hypertensive rat model. Invest Ophthalmol Vis Sci 54(3):1816–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abete P et al (1997) Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? J Am Coll Cardiol 30(4):947–954

    Article  CAS  PubMed  Google Scholar 

  • Abete P et al (2011) Ischemic preconditioning in the younger and aged heart. Aging Dis 2(2):138–148

    PubMed  PubMed Central  Google Scholar 

  • Aboumousa A et al (2008) Caveolinopathy – new mutations and additional symptoms. Neuromuscul Disord 18(7):572–578

    Article  PubMed  Google Scholar 

  • Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115(6):1363–1381

    CAS  PubMed  Google Scholar 

  • Andre A et al (2008) Membrane partitioning of various delta-opioid receptor forms before and after agonist activations: the effect of cholesterol. Biochim Biophys Acta 1778(6):1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Armstead WM (1998) ATP-dependent K+ channel activation reduces loss of opioid dilation after brain injury. Am J Physiol 274(5 Pt 2):H1674–H1683

    CAS  PubMed  Google Scholar 

  • Ashton KJ et al (2013) Unique transcriptional profile of sustained ligand-activated preconditioning in pre- and post-ischemic myocardium. PLoS One 8(8):e72278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhshi FR et al (2013) Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm Circ 3(4):816–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballard-Croft C et al (2006) Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Am J Physiol Heart Circ Physiol 291(2):H658–H667

    Article  CAS  PubMed  Google Scholar 

  • Barron BA (2000) Cardiac opioids. Proc Soc Exp Biol Med 224(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Barron BA et al (1992) Screening for opioids in dog heart. J Mol Cell Cardiol 24(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Baxter GF, Ferdinandy P (2001) Delayed preconditioning of myocardium: current perspectives. Basic Res Cardiol 96(4):329–344

    Article  CAS  PubMed  Google Scholar 

  • Bell SP et al (2000) Delta opioid receptor stimulation mimics ischemic preconditioning in human heart muscle. J Am Coll Cardiol 36(7):2296–2302

    Article  CAS  PubMed  Google Scholar 

  • Benedict PE et al (1999) Opiate drugs and delta-receptor-mediated myocardial protection. Circulation 100(19 Suppl):II357–II360

    CAS  PubMed  Google Scholar 

  • Bhargava HN et al (1988) Opioid peptides in pituitary gland, brain regions and peripheral tissues of spontaneously hypertensive and Wistar-Kyoto normotensive rats. Brain Res 440(2):333–340

    Article  CAS  PubMed  Google Scholar 

  • Bolli R et al (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95(2):125–134

    Article  CAS  PubMed  Google Scholar 

  • Bolling SF et al (1997) Use of “natural” hibernation induction triggers for myocardial protection. Ann Thorac Surg 64(3):623–627

    Article  CAS  PubMed  Google Scholar 

  • Bolling SF et al (1998) Hibernation triggers and myocardial protection. Circulation 98(19 Suppl):II220–II223. discussion II223-4

    CAS  PubMed  Google Scholar 

  • Bolling SF et al (2001) Opioids confer myocardial tolerance to ischemia: interaction of delta opioid agonists and antagonists. J Thorac Cardiovasc Surg 122(3):476–481

    Article  CAS  PubMed  Google Scholar 

  • Bolte C, Newman G, Schultz Jel J (2009a) Hypertensive state, independent of hypertrophy, exhibits an attenuated decrease in systolic function on cardiac kappa-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 296(4):H967–H975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolte C, Newman G, Schultz Jel J (2009b) Kappa and delta opioid receptor signaling is augmented in the failing heart. J Mol Cell Cardiol 47(4):493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boluyt MO et al (1993) Age-associated increase in rat cardiac opioid production. Am J Physiol 265(1 Pt 2):H212–H218

    CAS  PubMed  Google Scholar 

  • Borges JP et al (2014) Delta opioid receptors: the link between exercise and cardioprotection. PLoS One 9(11):e113541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borlongan CV, Wang Y, Su TP (2004) Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: linking hibernation and neuroprotection. Front Biosci 9:3392–3398

    Article  CAS  PubMed  Google Scholar 

  • Borlongan CV et al (2009) Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biol 7:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouhidel O et al (2008) Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 295(4):H1580–H1586

    Article  CAS  PubMed  Google Scholar 

  • Boutros A, Wang J (1995) Ischemic preconditioning, adenosine and bethanechol protect spontaneously hypertensive isolated rat hearts. J Pharmacol Exp Ther 275(3):1148–1156

    CAS  PubMed  Google Scholar 

  • Brown DA et al (2005) Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol 569(Pt 3):913–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce DS et al (1996) Circannual variations in bear plasma albumin and its opioid-like effects on guinea pig ileum. Pharmacol Biochem Behav 53(4):885–889

    Article  CAS  PubMed  Google Scholar 

  • Brundege JM, Williams JT (2002) Increase in adenosine sensitivity in the nucleus accumbens following chronic morphine treatment. J Neurophysiol 87(3):1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Budiono BP et al (2012) Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns. Am J Physiol Regul Integr Comp Physiol 302(9):R1091–R1100

    Article  CAS  PubMed  Google Scholar 

  • Budiono BP et al (2016) Coupling of myocardial stress resistance and signalling to voluntary activity and inactivity. Acta Physiol (Oxf) 218(2):112–122

    Article  CAS  Google Scholar 

  • Caffrey JL et al (1994) Aging, cardiac proenkephalin mRNA and enkephalin peptides in the Fisher 344 rat. J Mol Cell Cardiol 26(6):701–711

    Article  CAS  PubMed  Google Scholar 

  • Caffrey JL et al (1995) Intrinsic cardiac enkephalins inhibit vagal bradycardia in the dog. Am J Physiol 268(2 Pt 2):H848–H855

    CAS  PubMed  Google Scholar 

  • Chen Z, Li T, Zhang B (2008) Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J Surg Res 145(2):287–294

    Article  CAS  PubMed  Google Scholar 

  • Chien S et al (1991) Two-day preservation of major organs with autoperfusion multiorgan preparation and hibernation induction trigger. A preliminary report. J Thorac Cardiovasc Surg 102(2):224–234

    CAS  PubMed  Google Scholar 

  • Chien S et al (1994) Extension of tissue survival time in multiorgan block preparation with a delta opioid DADLE ([D-Ala2, D-Leu5]-enkephalin). J Thorac Cardiovasc Surg 107(3):964–967

    CAS  PubMed  Google Scholar 

  • Coccia R et al (2001) Interaction of enkephalin derivatives with reactive oxygen species. Biochim Biophys Acta 1525(1–2):43–49

    Article  CAS  PubMed  Google Scholar 

  • Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62:79–109

    Article  CAS  PubMed  Google Scholar 

  • Cohen AW et al (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84(4):1341–1379

    Article  CAS  PubMed  Google Scholar 

  • Cohen MV et al (2007) Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. J Mol Cell Cardiol 42(4):842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crain SM, Shen KF (1992) After chronic opioid exposure sensory neurons become supersensitive to the excitatory effects of opioid agonists and antagonists as occurs after acute elevation of GM1 ganglioside. Brain Res 575(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Lee TF, Wang LC (1996) In vivo microdialysis study on changes in septal dynorphin and beta-endorphin activities in active and hibernating Columbian ground squirrels. Brain Res 710(1–2):271–274

    Article  CAS  PubMed  Google Scholar 

  • Cui Y et al (1997) Autoradiographic determination of changes in opioid receptor binding in the limbic system of the Columbian ground squirrel at different hibernation states. Brain Res 747(2):189–194

    Article  CAS  PubMed  Google Scholar 

  • Czyzyk TA et al (2012) Mice lacking delta-opioid receptors resist the development of diet-induced obesity. FASEB J 26(8):3483–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson EW et al (2001) Naloxone blocks transferred preconditioning in isolated rabbit hearts. J Mol Cell Cardiol 33(9):1751–1756

    Article  CAS  PubMed  Google Scholar 

  • Dickson EW et al (2008) Exercise enhances myocardial ischemic tolerance via an opioid receptor-dependent mechanism. Am J Physiol Heart Circ Physiol 294(1):H402–H408

    Article  CAS  PubMed  Google Scholar 

  • Donner D et al (2013) Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech 6(2):457–466

    Article  CAS  PubMed  Google Scholar 

  • Drastichova Z et al (2011) Prolonged morphine administration alters protein expression in the rat myocardium. J Biomed Sci 18:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du XJ et al (2000) Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovasc Res 48(3):448–454

    Article  CAS  PubMed  Google Scholar 

  • Dumont M, Lemaire S (1988) Increased content of immunoreactive Leu-enkephalin and alteration of delta-opioid receptor in hearts of spontaneously hypertensive rats. Neurosci Lett 94(1–2):114–118

    Article  CAS  PubMed  Google Scholar 

  • Dumont M et al (1991) Circadian regulation of the biosynthesis of cardiac Met-enkephalin and precursors in normotensive and spontaneously hypertensive rats. Life Sci 48(20):1895–1902

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim Z, Yellon DM, Baxter GF (2007a) Attenuated cardioprotective response to bradykinin, but not classical ischaemic preconditioning, in DOCA-salt hypertensive left ventricular hypertrophy. Pharmacol Res 55(1):42–48

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim Z, Yellon DM, Baxter GF (2007b) Ischemic preconditioning is lost in aging hypertensive rat heart: independent effects of aging and longstanding hypertension. Exp Gerontol 42(8):807–814

    Article  CAS  PubMed  Google Scholar 

  • Egawa J et al (2016) Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function. J Physiol 594(16):4565–4579

    Article  CAS  PubMed  Google Scholar 

  • Eliasson T et al (1998) Myocardial turnover of endogenous opioids and calcitonin-gene-related peptide in the human heart and the effects of spinal cord stimulation on pacing-induced angina pectoris. Cardiology 89(3):170–177

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandy P et al (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174

    Article  CAS  PubMed  Google Scholar 

  • Feron O, Balligand JL (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69(4):788–797

    Article  CAS  PubMed  Google Scholar 

  • Floyd KC et al (2009) A 30-year perspective (1975-2005) into the changing landscape of patients hospitalized with initial acute myocardial infarction: Worcester Heart Attack Study. Circ Cardiovasc Qual Outcomes 2(2):88–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontana F et al (1993) Relationship between plasma atrial natriuretic factor and opioid peptide levels in healthy subjects and in patients with acute congestive heart failure. Eur Heart J 14(2):219–225

    Article  CAS  PubMed  Google Scholar 

  • Forster K et al (2007) The delta-opioid receptor agonist DADLE at reperfusion protects the heart through activation of pro-survival kinases via EGF receptor transactivation. Am J Physiol Heart Circ Physiol 293(3):H1604–H1608

    Article  PubMed  CAS  Google Scholar 

  • Fraessdorf J et al (2015) Role of endogenous opioid system in ischemic-induced late preconditioning. PLoS One 10(7):e0134283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frances C et al (2003) Role of beta 1- and beta 2-adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischemia and reperfusion. J Cardiovasc Pharmacol 41(3):396–405

    Article  CAS  PubMed  Google Scholar 

  • Fridolfsson HN et al (2012) Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB J 26(11):4637–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridolfsson HN et al (2014) Regulation of intracellular signaling and function by caveolin. FASEB J 28(9):3823–3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer RM et al (1999) Opioid-induced second window of cardioprotection: potential role of mitochondrial KATP channels. Circ Res 84(7):846–851

    Article  CAS  PubMed  Google Scholar 

  • Fryer RM et al (2001) Essential activation of PKC-delta in opioid-initiated cardioprotection. Am J Physiol Heart Circ Physiol 280(3):H1346–H1353

    Article  CAS  PubMed  Google Scholar 

  • Fuardo M et al (2013) [D-Ala2,D-Leu5]-enkephalin (DADLE) and morphine-induced postconditioning by inhibition of mitochondrial permeability transition pore, in human myocardium. Exp Biol Med (Maywood) 238(4):426–432

    Article  CAS  Google Scholar 

  • Fuhs SR, Insel PA (2011) Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization. J Biol Chem 286(17):14830–14841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120(5):1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T et al (1992) Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119(6):1507–1513

    Article  PubMed  Google Scholar 

  • Ghosh S, Standen NB, Galinianes M (2001) Failure to precondition pathological human myocardium. J Am Coll Cardiol 37(3):711–718

    Article  CAS  PubMed  Google Scholar 

  • Giles TD et al (1987) Systemic methionine-enkephalin evokes cardiostimulatory responses in the human. Peptides 8(4):609–612

    Article  CAS  PubMed  Google Scholar 

  • Gomez L et al (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117(21):2761–2768

    Article  CAS  PubMed  Google Scholar 

  • Goodman RR et al (1980) Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc Natl Acad Sci U S A 77(10):6239–6243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman MD et al (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol 295(4):H1649–H1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindaswami M et al (2008) Delta 2-specific opioid receptor agonist and hibernating woodchuck plasma fraction provide ischemic neuroprotection. Acad Emerg Med 15(3):250–257

    Article  PubMed  Google Scholar 

  • Gross RA et al (1990) Dynorphin A and cAMP-dependent protein kinase independently regulate neuronal calcium currents. Proc Natl Acad Sci U S A 87(18):7025–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross ER et al (2003) K(ATP) opener-induced delayed cardioprotection: involvement of sarcolemmal and mitochondrial K(ATP) channels, free radicals and MEK1/2. J Mol Cell Cardiol 35(8):985–992

    Article  CAS  PubMed  Google Scholar 

  • Gross ER, Hsu AK, Gross GJ (2004) Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res 94(7):960–966

    Article  CAS  PubMed  Google Scholar 

  • Gross ER et al (2005) Extending the cardioprotective window using a novel delta-opioid agonist fentanyl isothiocyanate via the PI3-kinase pathway. Am J Physiol Heart Circ Physiol 288(6):H2744–H2749

    Article  CAS  PubMed  Google Scholar 

  • Gross ER, Hsu AK, Gross GJ (2006) The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol 291(2):H827–H834

    Article  CAS  PubMed  Google Scholar 

  • Gross GJ et al (2007a) Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. J Mol Cell Cardiol 42(3):687–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross ER, Hsu AK, Gross GJ (2007b) GSK3beta inhibition and K(ATP) channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic Res Cardiol 102(4):341–349

    Article  CAS  PubMed  Google Scholar 

  • Gross ER, Hsu AK, Gross GJ (2007c) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • Gross GJ et al (2010) Evidence for a role of opioids in epoxyeicosatrienoic acid-induced cardioprotection in rat hearts. Am J Physiol Heart Circ Physiol 298(6):H2201–H2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross GJ et al (2012) Acute and chronic cardioprotection by the enkephalin analogue, Eribis peptide 94, is mediated via activation of nitric oxide synthase and adenosine triphosphate-regulated potassium channels. Pharmacology 90(1–2):110–116

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara Y et al (2000) Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet 9(20):3047–3054

    Article  CAS  PubMed  Google Scholar 

  • Halkos ME et al (2004) Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg 78(3):961–969. discussion 969

    Article  PubMed  Google Scholar 

  • Hamilton KL et al (2004) MnSOD antisense treatment and exercise-induced protection against arrhythmias. Free Radic Biol Med 37(9):1360–1368

    Article  CAS  PubMed  Google Scholar 

  • Hassouna A et al (2006) Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 69(2):450–458

    Article  CAS  PubMed  Google Scholar 

  • Head BP et al (2005) G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280(35):31036–31044

    Article  CAS  PubMed  Google Scholar 

  • Headrick JP (1998) Aging impairs functional, metabolic and ionic recovery from ischemia-reperfusion and hypoxia-reoxygenation. J Mol Cell Cardiol 30(7):1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Headrick JP, Pepe S, Peart JN (2012) Non-analgesic effects of opioids: cardiovascular effects of opioids and their receptor systems. Curr Pharm Des 18(37):6090–6100

    Article  CAS  PubMed  Google Scholar 

  • Headrick JP et al (2015) Opioid receptors and cardioprotection – ‘opioidergic conditioning’ of the heart. Br J Pharmacol 172(8):2026–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heusch G (1998) Hibernating myocardium. Physiol Rev 78(4):1055–1085

    Article  CAS  PubMed  Google Scholar 

  • Holaday JW (1983) Cardiovascular effects of endogenous opiate systems. Annu Rev Pharmacol Toxicol 23:541–594

    Article  CAS  PubMed  Google Scholar 

  • Hong J et al (2005) Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle. Muscle Nerve 32(2):200–207

    Article  PubMed  Google Scholar 

  • Horton ND et al (1998) Isolation and partial characterization of an opioid-like 88 kDa hibernation-related protein. Comp Biochem Physiol B Biochem Mol Biol 119(4):787–805

    Article  CAS  PubMed  Google Scholar 

  • Howells RD et al (1986) Proenkephalin mRNA in rat heart. Proc Natl Acad Sci U S A 83(6):1960–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruby VJ et al (2010) Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins. Life Sci 86(15–16):569–574

    Article  CAS  PubMed  Google Scholar 

  • Hu CP et al (2002) Effect of age on alpha-calcitonin gene-related peptide-mediated delayed cardioprotection induced by intestinal preconditioning in rats. Regul Pept 107(1–3):137–143

    Article  CAS  PubMed  Google Scholar 

  • Huang MH et al (2007a) Mediating delta-opioid-initiated heart protection via the beta2-adrenergic receptor: role of the intrinsic cardiac adrenergic cell. Am J Physiol Heart Circ Physiol 293(1):H376–H384

    Article  CAS  PubMed  Google Scholar 

  • Huang P et al (2007b) Agonist treatment did not affect association of mu opioid receptors with lipid rafts and cholesterol reduction had opposite effects on the receptor-mediated signaling in rat brain and CHO cells. Brain Res 1184:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P et al (2007c) Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem Pharmacol 73(4):534–549

    Article  CAS  PubMed  Google Scholar 

  • Husain S et al (2014) Regulation of nitric oxide production by delta-opioid receptors during glaucomatous injury. PLoS One 9(10):e110397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imai N et al (1994) Comparison of cardiovascular effects of mu- and delta-opioid receptor antagonists in dogs with congestive heart failure. Am J Physiol 267(3 Pt 2):H912–H917

    CAS  PubMed  Google Scholar 

  • Insel PA et al (2005) Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae. Biochem Soc Trans 33(Pt 5):1131–1134

    Article  CAS  PubMed  Google Scholar 

  • Inserte J et al (2004) Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res 64(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Jang Y et al (2008) Postconditioning prevents reperfusion injury by activating delta-opioid receptors. Anesthesiology 108(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Javadov SA et al (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549(Pt 2):513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings RB, Reimer KA (1991) The cell biology of acute myocardial ischemia. Annu Rev Med 42:225–246

    Article  CAS  PubMed  Google Scholar 

  • Jennings RB et al (1960) Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70:68–78

    CAS  PubMed  Google Scholar 

  • Jiang X et al (2004) Inducible nitric oxide synthase mediates delayed cardioprotection induced by morphine in vivo: evidence from pharmacologic inhibition and gene-knockout mice. Anesthesiology 101(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Jones KA et al (2004) Tuberin is a component of lipid rafts and mediates caveolin-1 localization: role of TSC2 in post-Golgi transport. Exp Cell Res 295(2):512–524

    Article  CAS  PubMed  Google Scholar 

  • Jordan BA, Cvejic S, Devi LA (2000) Opioids and their complicated receptor complexes. Neuropsychopharmacology 23(4 Suppl):S5–S18

    Article  CAS  PubMed  Google Scholar 

  • Jordan BA et al (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci U S A 98(1):343–348

    CAS  PubMed  Google Scholar 

  • Karlsson LO et al (2012) Dose-dependent cardioprotection of enkephalin analogue Eribis peptide 94 and cardiac expression of opioid receptors in a porcine model of ischaemia and reperfusion. Eur J Pharmacol 674(2–3):378–383

    Article  CAS  PubMed  Google Scholar 

  • Karoor V et al (2004) Propranolol prevents enhanced stress signaling in Gs alpha cardiomyopathy: potential mechanism for beta-blockade in heart failure. J Mol Cell Cardiol 36(2):305–312

    Article  CAS  PubMed  Google Scholar 

  • Katakam PV et al (2007) Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 292(2):R920–R926

    Article  CAS  PubMed  Google Scholar 

  • Kato R, Ross S, Foex P (2000) Fentanyl protects the heart against ischaemic injury via opioid receptors, adenosine A1 receptors and KATP channel linked mechanisms in rats. Br J Anaesth 84(2):204–214

    Article  CAS  PubMed  Google Scholar 

  • Kersten JR et al (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278(4):H1218–H1224

    Article  CAS  PubMed  Google Scholar 

  • Kevelaitis E et al (1999) Opening of potassium channels: the common cardioprotective link between preconditioning and natural hibernation? Circulation 99(23):3079–3085

    Article  CAS  PubMed  Google Scholar 

  • Kim HS et al (2010) Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival. Eur J Pharmacol 628(1–3):132–139

    Article  CAS  PubMed  Google Scholar 

  • Kim JH et al (2011) Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean J Anesthesiol 61(1):69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodani E et al (2002) Delta-opioid receptor-induced late preconditioning is mediated by cyclooxygenase-2 in conscious rabbits. Am J Physiol Heart Circ Physiol 283(5):H1943–H1957

    Article  CAS  PubMed  Google Scholar 

  • Krajewska WM, Maslowska I (2004) Caveolins: structure and function in signal transduction. Cell Mol Biol Lett 9(2):195–220

    CAS  PubMed  Google Scholar 

  • Krumins SA, Faden AI, Feuerstein G (1985) Opiate binding in rat hearts: modulation of binding after hemorrhagic shock. Biochem Biophys Res Commun 127(1):120–128

    Article  CAS  PubMed  Google Scholar 

  • Kuzume K et al (2003) Sustained exogenous administration of Met5-enkephalin protects against infarction in vivo. Am J Physiol Heart Circ Physiol 285(6):H2463–H2470

    Article  CAS  PubMed  Google Scholar 

  • Kuzume K et al (2005) Long-term infusion of Met5-enkephalin fails to protect murine hearts against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 288(4):H1717–H1723

    Article  CAS  PubMed  Google Scholar 

  • Lasley RD et al (2000) Activated cardiac adenosine A(1) receptors translocate out of caveolae. J Biol Chem 275(6):4417–4421

    Article  CAS  PubMed  Google Scholar 

  • Lecour S (2009) Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Lee CR et al (2006) Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Hum Mol Genet 15(10):1640–1649

    Article  CAS  PubMed  Google Scholar 

  • Lendeckel U et al (2005) Expression of opioid receptor subtypes and their ligands in fibrillating human atria. Pacing Clin Electrophysiol 28(Suppl 1):S275–S279

    Article  PubMed  Google Scholar 

  • Levitt ES et al (2009) Differential effect of membrane cholesterol removal on mu- and delta-opioid receptors: a parallel comparison of acute and chronic signaling to adenylyl cyclase. J Biol Chem 284(33):22108–22122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2003) Morphine induces desensitization of insulin receptor signaling. Mol Cell Biol 23(17):6255–6266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R et al (2009) Intrathecal morphine preconditioning induces cardioprotection via activation of delta, kappa, and mu opioid receptors in rats. Anesth Analg 108(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • Liggett SB et al (2000) Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101(14):1707–1714

    Article  CAS  PubMed  Google Scholar 

  • Lisanti MP et al (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4(7):231–235

    Article  CAS  PubMed  Google Scholar 

  • Liu M et al (2012) Aging might increase myocardial ischemia/reperfusion-induced apoptosis in humans and rats. Age (Dordr) 34(3):621–632

    Article  Google Scholar 

  • Lochner A et al (1999) Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation 100(9):958–966

    Article  CAS  PubMed  Google Scholar 

  • Lou LG, Pei G (1997) Modulation of protein kinase C and cAMP-dependent protein kinase by delta-opioid. Biochem Biophys Res Commun 236(3):626–629

    Article  CAS  PubMed  Google Scholar 

  • Lu HR et al (1999) Reduction in QT dispersion and ventricular arrhythmias by ischaemic preconditioning in anaesthetized, normotensive and spontaneously hypertensive rats. Fundam Clin Pharmacol 13(4):445–454

    Article  CAS  PubMed  Google Scholar 

  • Lu Y et al (2014) Spinal neuronal NOS activation mediates intrathecal fentanyl preconditioning induced remote cardioprotection in rats. Int Immunopharmacol 19(1):127–131

    Article  CAS  PubMed  Google Scholar 

  • Marais E et al (2005) The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Res Cardiol 100(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Maslov LN, Krylatov AV, Lishmanov Iu B (1996) Participation of endogenous mu- and delta-opiate receptor agonists in mechanisms of the anti-arrhythmia effect of adaptation. Biull Eksp Biol Med 121(1):24–25

    Article  CAS  PubMed  Google Scholar 

  • Maslov LN et al (2006) Negative inotropic and chronotropic effects of delta-opioid receptor antagonists are mediated via non-opioid receptors. Bull Exp Biol Med 141(4):420–423

    Article  CAS  PubMed  Google Scholar 

  • Maslov LN et al (2009) Activation of peripheral delta2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci 84(19–20):657–663

    Article  CAS  PubMed  Google Scholar 

  • May CN et al (1989) Differential cardiovascular and respiratory responses to central administration of selective opioid agonists in conscious rabbits: correlation with receptor distribution. Br J Pharmacol 98(3):903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh VJ, Lasley RD (2012) Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Menard DP et al (1996) A calcitonin gene-related peptide receptor antagonist prevents the development of tolerance to spinal morphine analgesia. J Neurosci 16(7):2342–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mieno S et al (2002) Potent adenylate cyclase agonist forskolin restores myoprotective effects of ischemic preconditioning in rat hearts after myocardial infarction. Ann Thorac Surg 74(4):1213–1218

    Article  PubMed  Google Scholar 

  • Miki T et al (2012) Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 11:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller LE et al (2015) Involvement of the delta-opioid receptor in exercise-induced cardioprotection. Exp Physiol 100(4):410–421

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Miki T (2008) Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol 103(6):501–513

    Article  PubMed  Google Scholar 

  • Miura T et al (2007) Delta-opioid receptor activation before ischemia reduces gap junction permeability in ischemic myocardium by PKC-epsilon-mediated phosphorylation of connexin 43. Am J Physiol Heart Circ Physiol 293(3):H1425–H1431

    Article  CAS  PubMed  Google Scholar 

  • Monier S et al (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6(7):911–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moolman JA et al (1997) Ischaemic preconditioning does not protect hypertrophied myocardium against ischaemia. S Afr Med J 87(Suppl 3):C151–C156

    PubMed  Google Scholar 

  • Motoki A et al (2008) Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. Am J Physiol Heart Circ Physiol 295(5):H2128–H2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougin C et al (1987) Assessment of plasma opioid peptides, beta-endorphin and met-enkephalin, at the end of an international nordic ski race. Eur J Appl Physiol Occup Physiol 56(3):281–286

    Article  CAS  PubMed  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VT et al (2012) Delta-opioid augments cardiac contraction through beta-adrenergic and CGRP-receptor co-signaling. Peptides 33(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M et al (2006) Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta. Am J Physiol Heart Circ Physiol 291(2):H748–H755

    Article  CAS  PubMed  Google Scholar 

  • Nithipatikom K et al (2006) Epoxyeicosatrienoic acids in cardioprotection: ischemic versus reperfusion injury. Am J Physiol Heart Circ Physiol 291(2):H537–H542

    Article  CAS  PubMed  Google Scholar 

  • Oeltgen PR et al (1988) Further studies on opioids and hibernation: delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci 43(19):1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Oeltgen PR et al (1996) Extended lung preservation with the use of hibernation trigger factors. Ann Thorac Surg 61(5):1488–1493

    Article  CAS  PubMed  Google Scholar 

  • Okubo S et al (2004) Ischemic preconditioning and morphine attenuate myocardial apoptosis and infarction after ischemia-reperfusion in rabbits: role of delta-opioid receptor. Am J Physiol Heart Circ Physiol 287(4):H1786–H1791

    Article  CAS  PubMed  Google Scholar 

  • Olianas MC, Dedoni S, Onali P (2011) delta-Opioid receptors stimulate GLUT1-mediated glucose uptake through Src- and IGF-1 receptor-dependent activation of PI3-kinase signalling in CHO cells. Br J Pharmacol 163(3):624–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olianas MC et al (2012) delta-Opioid receptors stimulate the metabolic sensor AMP-activated protein kinase through coincident signaling with G(q/11)-coupled receptors. Mol Pharmacol 81(2):154–165

    Article  CAS  PubMed  Google Scholar 

  • Ouellette M, Brakier-Gingras L (1988) Increase in the relative abundance of preproenkephalin A messenger RNA in the ventricles of cardiomyopathic hamsters. Biochem Biophys Res Commun 155(1):449–454

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14(2):98–112

    Article  CAS  PubMed  Google Scholar 

  • Patel HH et al (2002a) Sarcolemmal K(ATP) channel triggers opioid-induced delayed cardioprotection in the rat. Circ Res 91(3):186–188

    Article  CAS  PubMed  Google Scholar 

  • Patel HH et al (2002b) Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 34(10):1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Patel HH et al (2003) 12-lipoxygenase in opioid-induced delayed cardioprotection: gene array, mass spectrometric, and pharmacological analyses. Circ Res 92(6):676–682

    Article  CAS  PubMed  Google Scholar 

  • Patel HH et al (2006) Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors. Am J Physiol Heart Circ Physiol 291(1):H344–H350

    Article  CAS  PubMed  Google Scholar 

  • Patel HH et al (2007) Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 21(7):1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Patel HH, Murray F, Insel PA (2008a) G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol (186):167–184

    Google Scholar 

  • Patel HH, Murray F, Insel PA (2008b) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peart JN, Gross GJ (2003) Adenosine and opioid receptor-mediated cardioprotection in the rat: evidence for cross-talk between receptors. Am J Physiol Heart Circ Physiol 285(1):H81–H89

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Gross GJ (2004a) Exogenous activation of delta- and kappa-opioid receptors affords cardioprotection in isolated murine heart. Basic Res Cardiol 99(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Gross GJ (2004b) Chronic exposure to morphine produces a marked cardioprotective phenotype in aged mouse hearts. Exp Gerontol 39(7):1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Gross GJ (2004c) Morphine-tolerant mice exhibit a profound and persistent cardioprotective phenotype. Circulation 109(10):1219–1222

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Gross GJ (2005) Cardioprotection following adenosine kinase inhibition in rat hearts. Basic Res Cardiol 100(4):328–336

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Gross GJ (2006) Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways. Am J Physiol Heart Circ Physiol 291(4):H1746–H1753

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114(2):208–221

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Headrick JP (2008) Sustained cardioprotection: exploring unconventional modalities. Vascul Pharmacol 49(2–3):63–70

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Headrick JP (2009) Clinical cardioprotection and the value of conditioning responses. Am J Physiol Heart Circ Physiol 296(6):H1705–H1720

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Patel HH, Gross GJ (2003) Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J Cardiovasc Pharmacol 42(1):78–81

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Gross ER, Gross GJ (2005) Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 42(5–6):211–218

    Article  CAS  PubMed  Google Scholar 

  • Peart JN et al (2007) Impaired p38 MAPK/HSP27 signaling underlies aging-related failure in opioid-mediated cardioprotection. J Mol Cell Cardiol 42(5):972–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peart JN et al (2011) Sustained ligand-activated preconditioning via delta-opioid receptors. J Pharmacol Exp Ther 336(1):274–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peart JN et al (2014) Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 50:72–81

    Article  PubMed  Google Scholar 

  • Peng J, Sarkar S, Chang SL (2012) Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend 124(3):223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepe S et al (1997) ‘Cross talk’ between opioid peptide and adrenergic receptor signaling in isolated rat heart. Circulation 95(8):2122–2129

    Article  CAS  PubMed  Google Scholar 

  • Pepe S et al (2004) Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart. Cardiovasc Res 63(3):414–422

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ et al (1980) Neurotransmitter receptor binding in bovine cerebral microvessels. Science 208(4444):610–612

    Article  CAS  PubMed  Google Scholar 

  • Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3(6):186–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667

    Article  CAS  PubMed  Google Scholar 

  • Pradhan AA et al (2010) Ligand-directed trafficking of the delta-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci 30(49):16459–16468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan AA et al (2012) Ligand-directed signalling within the opioid receptor family. Br J Pharmacol 167(5):960–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan AA et al (2016) Agonist-specific recruitment of arrestin isoforms differentially modify delta opioid receptor function. J Neurosci 36(12):3541–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przyklenk K (2011) Efficacy of cardioprotective ‘conditioning’ strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 28(5):331–343

    Article  PubMed  Google Scholar 

  • Przyklenk K, Whittaker P (2011) Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther 16(3–4):255–259

    Article  PubMed  Google Scholar 

  • Przyklenk K et al (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899

    Article  CAS  PubMed  Google Scholar 

  • Przyklenk K et al (2008) Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol 51(14):1393–1398

    Article  PubMed  Google Scholar 

  • Przyklenk K et al (2011) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugsley MK (2002) The diverse molecular mechanisms responsible for the actions of opioids on the cardiovascular system. Pharmacol Ther 93(1):51–75

    Article  CAS  PubMed  Google Scholar 

  • Pugsley MK et al (1993) Electrophysiological and antiarrhythmic actions of the kappa agonist PD 129290, and its R,R (+)-enantiomer, PD 129289. Br J Pharmacol 110(4):1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugsley MK et al (1998) Sodium channel-blocking properties of spiradoline, a kappa receptor agonist, are responsible for its antiarrhythmic action in the rat. J Cardiovasc Pharmacol 32(6):863–874

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y et al (2011) Cholesterol regulates micro-opioid receptor-induced beta-arrestin 2 translocation to membrane lipid rafts. Mol Pharmacol 80(1):210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quindry JC et al (2010) Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts. Am J Physiol Heart Circ Physiol 299(1):H175–H183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radel C, Rizzo V (2005) Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol 288(2):H936–H945

    Article  CAS  PubMed  Google Scholar 

  • Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72(6 Pt 2):V123–V135

    CAS  PubMed  Google Scholar 

  • Rakhit RD, Marber MS (2001) Nitric oxide: an emerging role in cardioprotection? Heart 86(4):368–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralston E, Ploug T (1999) Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers. Exp Cell Res 246(2):510–515

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak P et al (2003) Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 57(2):358–369

    Article  CAS  PubMed  Google Scholar 

  • Riess ML et al (2005) Increasing heart size and age attenuate anesthetic preconditioning in guinea pig isolated hearts. Anesth Analg 101(6):1572–1576

    Article  PubMed  Google Scholar 

  • Ritchie RH et al (2012) Enhanced phosphoinositide 3-kinase(p110alpha) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 55(12):3369–3381

    Article  CAS  PubMed  Google Scholar 

  • Roger VL et al (2012) Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220

    Article  PubMed  Google Scholar 

  • Romano MA et al (2004a) Differential effects of opioid peptides on myocardial ischemic tolerance. J Surg Res 119(1):46–50

    Article  CAS  PubMed  Google Scholar 

  • Romano MA et al (2004b) Relative contribution of endogenous opioids to myocardial ischemic tolerance. J Surg Res 118(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger J, Petrovics G, Buzas B (2001) Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB. J Neurochem 79(1):35–44

    Article  CAS  PubMed  Google Scholar 

  • Roth DM, Patel HH (2011) Role of caveolae in cardiac protection. Pediatr Cardiol 32(3):329–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Meana M et al (2014) Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. J Mol Cell Cardiol 68:79–88

    Article  CAS  PubMed  Google Scholar 

  • Sanada S et al (2004) Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation 110(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301(5):H1723–H1741

    Article  CAS  PubMed  Google Scholar 

  • Schulman D, Latchman DS, Yellon DM (2001) Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 281(4):H1630–H1636

    Article  CAS  PubMed  Google Scholar 

  • Schultz JE, Gross GJ (2001) Opioids and cardioprotection. Pharmacol Ther 89(2):123–137

    Article  CAS  PubMed  Google Scholar 

  • Schultz JE et al (1995) Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 268(5 Pt 2):H2157–H2161

    CAS  PubMed  Google Scholar 

  • Schultz JE, Hsu AK, Gross GJ (1996) Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res 78(6):1100–1104

    Article  CAS  PubMed  Google Scholar 

  • Schultz JJ, Hsu AK, Gross GJ (1997a) Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart. J Mol Cell Cardiol 29(5):1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Schultz JJ, Hsu AK, Gross GJ (1997b) Ischemic preconditioning and morphine-induced cardioprotection involve the delta (delta)-opioid receptor in the intact rat heart. J Mol Cell Cardiol 29(8):2187–2195

    Article  CAS  PubMed  Google Scholar 

  • Schultz Je-J et al (1998) TAN-67, a delta 1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol 274(3 Pt 2):H909–H914

    CAS  Google Scholar 

  • Schulz R, Gres P, Heusch G (2001) Role of endogenous opioids in ischemic preconditioning but not in short-term hibernation in pigs. Am J Physiol Heart Circ Physiol 280(5):H2175–H2181

    Article  CAS  PubMed  Google Scholar 

  • Schwartz CF et al (1999) Delta opioid receptors and low temperature myocardial protection. Ann Thorac Surg 68(6):2089–2092

    Article  CAS  PubMed  Google Scholar 

  • Scriven DR et al (2002) The molecular architecture of calcium microdomains in rat cardiomyocytes. Ann N Y Acad Sci 976:488–499

    Article  CAS  PubMed  Google Scholar 

  • Scriven DR et al (2005) Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors. Biophys J 89(3):1893–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • See Hoe LE et al (2014) Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. Am J Physiol Heart Circ Physiol 307(6):H895–H903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • See Hoe LE et al (2016) Chronic beta1-adrenoceptor blockade impairs ischaemic tolerance and preconditioning in murine myocardium. Eur J Pharmacol 789:1–7

    Article  CAS  PubMed  Google Scholar 

  • Seubert J et al (2004) Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circ Res 95(5):506–514

    Article  CAS  PubMed  Google Scholar 

  • Seubert JM et al (2006) Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ Res 99(4):442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour EM et al (2003) HL-1 myocytes exhibit PKC and K(ATP) channel-dependent delta opioid preconditioning. J Surg Res 114(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Shan J et al (2002) Attenuated “cross talk” between kappa-opioid receptors and beta-adrenoceptors in the heart of chronically hypoxic rats. Pflugers Arch 444(1–2):126–132

    Article  CAS  PubMed  Google Scholar 

  • Shankar V, Armstead WM (1995) Opioids contribute to hypoxia-induced pial artery dilation through activation of ATP-sensitive K+ channels. Am J Physiol 269(3 Pt 2):H997–1002

    CAS  PubMed  Google Scholar 

  • Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275(5 Pt 1):L843–L851

    CAS  PubMed  Google Scholar 

  • Shen J et al (2000) Role of cAMP-dependent protein kinase (PKA) in opioid agonist-induced mu-opioid receptor downregulation and tolerance in mice. Synapse 38(3):322–327

    Article  CAS  PubMed  Google Scholar 

  • Shen H et al (2012) Role of delta2 opioid receptor in cardioprotection against hypoxia-reoxygenation injury. J Cardiovasc Pharmacol 60(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Sheng JZ et al (1996) Lithium attenuates the effects of dynorphin A(1-13) on inositol 1,4,5-trisphosphate and intracellular Ca2+ in rat ventricular myocytes. Life Sci 59(25–26):2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Vinten-Johansen J (2012) Endogenous cardioprotection by ischaemic postconditioning and remote conditioning. Cardiovasc Res 94(2):206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sichelschmidt OJ et al (2003) Trapidil protects ischemic hearts from reperfusion injury by stimulating PKAII activity. Cardiovasc Res 58(3):602–610

    Article  CAS  PubMed  Google Scholar 

  • Sigg DC et al (2002) Role of delta-opioid receptor agonists on infarct size reduction in swine. Am J Physiol Heart Circ Physiol 282(6):H1953–H1960

    Article  CAS  PubMed  Google Scholar 

  • Sobanski P et al (2014) The presence of mu-, delta-, and kappa-opioid receptors in human heart tissue. Heart Vessels 29(6):855–863

    Article  PubMed  Google Scholar 

  • Stary CM et al (2012) Caveolins: targeting pro-survival signaling in the heart and brain. Front Physiol 3:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106(2):285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J et al (2015) Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc Res 106(2):227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun T et al (2016) Preservation of CGRP in myocardium attenuates development of cardiac dysfunction in diabetic rats. Int J Cardiol 220:226–234

    Article  PubMed  Google Scholar 

  • Surendra H et al (2013) Interaction of delta and kappa opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning. J Mol Cell Cardiol 60:142–150

    Article  CAS  PubMed  Google Scholar 

  • Tamura Y et al (2006) Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons. Brain Res 1108(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Tamura Y et al (2012) Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: involvement of beta-endorphin. Brain Res 1448:63–70

    Article  CAS  PubMed  Google Scholar 

  • Tani M et al (2001) Direct activation of mitochondrial K(ATP) channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovasc Res 49(1):56–68

    Article  CAS  PubMed  Google Scholar 

  • Theisen MM et al (2014) Detection and distribution of opioid peptide receptors in porcine myocardial tissue. Pharmacol Res 84:45–49

    Article  CAS  PubMed  Google Scholar 

  • Tobin SJ et al (2014) Nanoscale effects of ethanol and naltrexone on protein organization in the plasma membrane studied by photoactivated localization microscopy (PALM). PLoS One 9(2):e87225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomai F et al (1999) Effects of naloxone on myocardial ischemic preconditioning in humans. J Am Coll Cardiol 33(7):1863–1869

    Article  CAS  PubMed  Google Scholar 

  • Tong H et al (2005) The role of beta-adrenergic receptor signaling in cardioprotection. FASEB J 19(8):983–985

    Article  CAS  PubMed  Google Scholar 

  • Trang T et al (2002) The role of spinal neuropeptides and prostaglandins in opioid physical dependence. Br J Pharmacol 136(1):37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang A et al (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95(3):230–232

    Article  CAS  PubMed  Google Scholar 

  • Tsanova A et al (2014) Interaction of methionine-enkephalins with raft-forming lipids: monolayers and BAM experiments. Amino Acids 46(5):1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Tsanova A, Jordanova A, Lalchev Z (2016) Effects of leucin-enkephalins on surface characteristics and morphology of model membranes composed of raft-forming lipids. J Membr Biol 249(3):229–238

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi YM et al (2007) Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci 81(15):1223–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi YM et al (2008) Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning. Circulation 118(19):1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi YM et al (2010) Opioid-induced preconditioning is dependent on caveolin-3 expression. Anesth Analg 111(5):1117–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Tumati S et al (2009) Sustained morphine treatment augments capsaicin-evoked calcitonin gene-related peptide release from primary sensory neurons in a protein kinase A- and Raf-1-dependent manner. J Pharmacol Exp Ther 330(3):810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valtchanova-Matchouganska A, Ojewole JA (2003) Mechanisms of opioid delta (delta) and kappa ( kappa) receptors’ cardioprotection in ischaemic preconditioning in a rat model of myocardial infarction. Cardiovasc J S Afr 14(2):73–80

    CAS  PubMed  Google Scholar 

  • Vander Heide RS, Steenbergen C (2013) Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ Res 113(4):464–477

    Article  CAS  PubMed  Google Scholar 

  • Varga EV et al (2003) Molecular mechanisms of excitatory signaling upon chronic opioid agonist treatment. Life Sci 74(2–3):299–311

    Article  CAS  PubMed  Google Scholar 

  • Vargish T, Beamer KC (1989) Delta and Mu receptor agonists correlate with greater depression of cardiac function than morphine sulfate in perfused rat hearts. Circ Shock 27(3):245–251

    CAS  PubMed  Google Scholar 

  • Ventura C et al (1989) Opioid receptors in rat cardiac sarcolemma: effect of phenylephrine and isoproterenol. Biochim Biophys Acta 987(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Ventura C et al (1992) Kappa and delta opioid receptor stimulation affects cardiac myocyte function and Ca2+ release from an intracellular pool in myocytes and neurons. Circ Res 70(1):66–81

    Article  CAS  PubMed  Google Scholar 

  • Villemagne PS et al (2002) PET imaging of human cardiac opioid receptors. Eur J Nucl Med Mol Imaging 29(10):1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Vinten-Johansen J, Yellon DM, Opie LH (2005) Postconditioning: a simple, clinically applicable procedure to improve revascularization in acute myocardial infarction. Circulation 112(14):2085–2088

    Article  PubMed  Google Scholar 

  • Wagner EJ, Ronnekleiv OK, Kelly MJ (1998) Protein kinase A maintains cellular tolerance to mu opioid receptor agonists in hypothalamic neurosecretory cells with chronic morphine treatment: convergence on a common pathway with estrogen in modulating mu opioid receptor/effector coupling. J Pharmacol Exp Ther 285(3):1266–1273

    CAS  PubMed  Google Scholar 

  • Wagner C et al (2008) Cardioprotection by postconditioning is lost in WOKW rats with metabolic syndrome: role of glycogen synthase kinase 3beta. J Cardiovasc Pharmacol 52(5):430–437

    Article  CAS  PubMed  Google Scholar 

  • Wang TL et al (1998) Morphine preconditioning attenuates neutrophil activation in rat models of myocardial infarction. Cardiovasc Res 40(3):557–563

    Article  CAS  PubMed  Google Scholar 

  • Wang GY et al (2001) Kappa- but not delta-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am J Physiol Heart Circ Physiol 280(1):H384–H391

    Article  CAS  PubMed  Google Scholar 

  • Weil J et al (2006) Alterations of the preproenkephalin system in cardiac hypertrophy and its role in atrioventricular conduction. Cardiovasc Res 69(2):412–422

    Article  CAS  PubMed  Google Scholar 

  • Weinbrenner C et al (2004) Remote preconditioning by infrarenal aortic occlusion is operative via delta1-opioid receptors and free radicals in vivo in the rat heart. Cardiovasc Res 61(3):591–599

    Article  CAS  PubMed  Google Scholar 

  • Whitworth JA (2003) 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 21(11):1983–1992

    Article  PubMed  Google Scholar 

  • Widimsky P et al (2010) Reperfusion therapy for ST elevation acute myocardial infarction in Europe: description of the current situation in 30 countries. Eur Heart J 31(8):943–957

    Article  PubMed  Google Scholar 

  • Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5(3):214

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams-Pritchard G et al (2011a) Essential role of EGFR in cardioprotection and signaling responses to A1 adenosine receptors and ischemic preconditioning. Am J Physiol Heart Circ Physiol 300(6):H2161–H2168

    Article  CAS  PubMed  Google Scholar 

  • Williams-Pritchard G, Headrick JP, Peart JN (2011b) Myocardial opioid receptors in conditioning and cytoprotection. Pharmaceuticals 4(3):470–484

    Article  CAS  PubMed Central  Google Scholar 

  • Wittert G, Hope P, Pyle D (1996) Tissue distribution of opioid receptor gene expression in the rat. Biochem Biophys Res Commun 218(3):877–881

    Article  CAS  PubMed  Google Scholar 

  • Wojtovich AP et al (2012) Ischemic preconditioning: the role of mitochondria and aging. Exp Gerontol 47(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Wong GT et al (2012) Intrathecal morphine remotely preconditions the heart via a neural pathway. J Cardiovasc Pharmacol 60(2):172–178

    Article  CAS  PubMed  Google Scholar 

  • Woodman SE et al (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277(41):38988–38997

    Article  CAS  PubMed  Google Scholar 

  • Woodman SE et al (2004) Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 62(4):538–543

    Article  CAS  PubMed  Google Scholar 

  • Xiao RP et al (1997) Opioid peptide receptor stimulation reverses beta-adrenergic effects in rat heart cells. Am J Physiol 272(2 Pt 2):H797–H805

    CAS  PubMed  Google Scholar 

  • Yadav HN, Singh M, Sharma PL (2010) Involvement of GSK-3beta in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol Cell Biochem 343(1–2):75–81

    Article  CAS  PubMed  Google Scholar 

  • Yamashita N et al (1999) Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 189(11):1699–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L et al (2011) Interaction between spinal opioid and adenosine receptors in remote cardiac preconditioning: effect of intrathecal morphine. J Cardiothorac Vasc Anesth 25(3):444–448

    Article  CAS  PubMed  Google Scholar 

  • Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83(4):1113–1151

    Article  CAS  PubMed  Google Scholar 

  • Yin X et al (2012) Diabetic inhibition of preconditioning- and postconditioning-mediated myocardial protection against ischemia/reperfusion injury. Exp Diabetes Res 2012:198048

    Article  PubMed  Google Scholar 

  • You L et al (2011) Postconditioning reduces infarct size and cardiac myocyte apoptosis via the opioid receptor and JAK-STAT signaling pathway. Mol Biol Rep 38(1):437–443

    Article  CAS  PubMed  Google Scholar 

  • Zatta AJ et al (2008) Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol 294(3):H1444–H1451

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Irwin MG, Wong TM (2004) Remifentanil preconditioning protects against ischemic injury in the intact rat heart. Anesthesiology 101(4):918–923

    Article  CAS  PubMed  Google Scholar 

  • Zhang SZ et al (2006) Kappa-opioid receptors mediate cardioprotection by remote preconditioning. Anesthesiology 105(3):550–556

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2011) Intracerebroventricular administration of morphine confers remote cardioprotection – role of opioid receptors and calmodulin. Eur J Pharmacol 656(1–3):74–80

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Loh HH, Law PY (2006) Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Mol Pharmacol 69(4):1421–1432

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Peart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

See Hoe, L., Patel, H.H., Peart, J.N. (2017). Delta Opioid Receptors and Cardioprotection. In: Jutkiewicz, E. (eds) Delta Opioid Receptor Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology, vol 247. Springer, Cham. https://doi.org/10.1007/164_2017_6

Download citation

Publish with us

Policies and ethics