Skip to main content

Delta Opioid Pharmacology in Parkinson’s Disease

  • Chapter
  • First Online:
Delta Opioid Receptor Pharmacology and Therapeutic Applications

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 247))

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that compromises multiple neurochemical substrates including dopamine, norepinephrine, serotonin, acetylcholine, and glutamate systems. Loss of these transmitter systems initiates a cascade of neurological deficits beginning with motor function and ending with dementia. Current therapies primarily address the motor symptoms of the disease via dopamine replacement therapy. Exogenous dopamine replacement brings about additional challenges since after years of treatment it almost invariably gives rise to dyskinesia as a side effect. Therefore there is a clear unmet clinical need for improved PD therapeutics. Opioid receptors and their respective peptides are expressed throughout the basal ganglia and cortex where monoaminergic denervation strongly contributes to PD pathology. Delta opioid receptors are of particular interest because of their dense localization in basal ganglia and because activating this system is known to enhance locomotor activity under a variety of conditions. This chapter will outline much of the work that has demonstrated the effectiveness of delta opioid receptor activation in models of PD and its neuroprotective properties. It also discusses some of the challenges that must be addressed before moving delta opioid receptor agonists into a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6:259–280

    PubMed  PubMed Central  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Aubert I, Guigoni C, Håkansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE, Fisone G, Bloch B, Bezard E (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57:17–26

    Article  CAS  PubMed  Google Scholar 

  • Babbini M, Davis WM (1972) Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br J Pharmacol 46:213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  • Billet F, Costentin J, Dourmap N (2012) Influence of corticostriatal δ-opioid receptors on abnormal involuntary movements induced by L-DOPA in hemiparkinsonian rats. Exp Neurol 236:339–350

    Article  CAS  PubMed  Google Scholar 

  • Bilsky EJ, Calderon SN, Wang T, Bernstein RN, Davis P, Hruby VJ, McNutt RW, Rothman RB, Rice KC, Porreca F (1995) SNC 80, a selective, nonpeptidic and systemically active opioid delta agonist. J Pharmacol Exp Ther 273:359–366

    CAS  PubMed  Google Scholar 

  • Bofetiado DM, Mayfield KP, D’Alecy LG (1996) Alkaloid delta agonist BW373U86 increases hypoxic tolerance. Anesth Analg 82:1237–1241

    Article  CAS  PubMed  Google Scholar 

  • Borlongan CV, Su TP, Wang Y (2000) Treatment with delta opioid peptide enhances in vitro and in vivo survival of rat dopaminergic neurons. Neuroreport 11:923–926

    Article  CAS  PubMed  Google Scholar 

  • Broom DC, Jutkiewicz EM, Folk JE, Traynor JR, Rice KC, Woods JH (2002a) Nonpeptidic delta-opioid receptor agonists reduce immobility in the forced swim assay in rats. Neuropsychopharmacology 26:744–755

    Article  CAS  PubMed  Google Scholar 

  • Broom DC, Jutkiewicz EM, Folk JE, Traynor JR, Rice KC, Woods JH (2002b) Convulsant activity of a non-peptidic delta-opioid receptor agonist is not required for its antidepressant-like effects in Sprague-Dawley rats. Psychopharmacology (Berl) 164:42–48

    Article  CAS  Google Scholar 

  • Chung PC, Boehrer A, Stephan A, Matifas A, Scherrer G, Darcq E, Befort K, Kieffer BL (2015) Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures. Behav Brain Res 278:429–434

    Google Scholar 

  • Comb M, Seeburg PH, Adelman J, Eiden L, Herbert E (1982) Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature 295:663–666

    Article  CAS  PubMed  Google Scholar 

  • Cowan A, Zhu XZ, Porreca F (1985) Studies in vivo with ICI 174864 and [D-Pen2, D-Pen5]enkephalin. Neuropeptides 5:311–314

    Article  CAS  PubMed  Google Scholar 

  • Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res 334:227–233

    Article  CAS  PubMed  Google Scholar 

  • Dykstra LA, Schoenbaum GM, Yarbrough J, McNutt R, Chang KJ (1993) A novel delta opioid agonist, BW373U86, in squirrel monkeys responding under a schedule of shock titration. J Pharmacol Exp Ther 267:875–882

    CAS  PubMed  Google Scholar 

  • Emmett MR, Caprioli RM (1994) Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins. J Am Soc Mass Spectrom 5:605–613

    Article  CAS  PubMed  Google Scholar 

  • Engber TM, Boldry RC, Kuo S, Chase TN (1992) Dopaminergic modulation of striatal neuropeptides: differential effects of D1 and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Res 581:261–268

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, McGinty JF, Young WS 3rd (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J Neurosci 11:1016–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol 26:507–514

    Article  CAS  PubMed  Google Scholar 

  • Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20:RC110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Tsao LI, Cadet JL, Su TP (1999) [D-Ala2, D-Leu5]enkephalin blocks the methamphetamine-induced c-fos mRNA increase in mouse striatum. Eur J Pharmacol 366:R7–R8

    Article  CAS  PubMed  Google Scholar 

  • Henry B, Fox SH, Crossman AR, Brotchie JM (2001) Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol 171:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hille CJ, Fox SH, Maneuf YP, Crossman AR, Brotchie JM (2001) Antiparkinsonian action of a delta opioid agonist in rodent and primate models of Parkinson’s disease. Exp Neurol 172:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hudzik TJ, Howell A, Payza K, Cross AJ (2000) Antiparkinson potential of delta-opioid receptor agonists. Eur J Pharmacol 396:101–107

    Article  CAS  PubMed  Google Scholar 

  • Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jutkiewicz EM, Rice KC, Traynor JR, Woods JH (2005) Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats. Psychopharmacology (Berl) 182:588–596

    Article  CAS  Google Scholar 

  • Le Bourdonnec B, Windh RT, Ajello CW, Leister LK, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD, Graczyk TM, Belanger S, Cassel JA, Feschenko MS, Brogdon BL, Smith SA, Christ DD, Derelanko MJ, Kutz S, Little PJ, DeHaven RN, DeHaven-Hudkins DL, Dolle RE (2008) Potent, orally bioavailable delta opioid receptor agonists for the treatment of pain: discovery of N, N-diethyl-4-(5-hydroxyspiro[chromene-2,4′-piperidine]-4-yl)benzamide (ADL5859). J Med Chem 51:5893–5896

    Article  PubMed  Google Scholar 

  • Lester J, Fink S, Aronin N, DiFiglia M (1993) Colocalization of D1 and D2 dopamine receptor mRNAs in striatal neurons. Brain Res 621:106–110

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zubieta JK, Kennedy RT (2009) Practical aspects of in vivo detection of neuropeptides by microdialysis coupled off-line to capillary LC with multistage MS. Anal Chem 81:2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindskog M, Svenningsson P, Fredholm B, Greengard P, Fisone G (1999) Mu- and delta-opioid receptor agonists inhibit DARPP-32 phosphorylation in distinct populations of striatal projection neurons. Eur J Neurosci 11:2182–2186

    Article  CAS  PubMed  Google Scholar 

  • Mabrouk OS, Volta M, Marti M, Morari M (2008) Stimulation of delta opioid receptors located in substantia nigra reticulata but not globus pallidus or striatum restores motor activity in 6-hydroxydopamine lesioned rats: new insights into the role of delta receptors in parkinsonism. J Neurochem 107:1647–1659

    Article  CAS  PubMed  Google Scholar 

  • Mabrouk OS, Marti M, Salvadori S, Morari M (2009) The novel delta opioid receptor agonist UFP-512 dually modulates motor activity in hemiparkinsonian rats via control of the nigro-thalamic pathway. Neuroscience 164:360–369

    Article  CAS  PubMed  Google Scholar 

  • Mabrouk OS, Li Q, Song P, Kennedy RT (2011) Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement. J Neurochem 118:24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabrouk OS, Falk T, Sherman SJ, Kennedy RT, Polt R (2012) CNS penetration of the opioid glycopeptide MMP-2200: a microdialysis study. Neurosci Lett 531:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M (2014) Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 34:12953–12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maneuf YP, Mitchell IJ, Crossman AR, Brotchie JM (1994) On the role of enkephalin cotransmission in the GABAergic striatal efferents to the globus pallidus. Exp Neurol 125:65–71

    Article  CAS  PubMed  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Mela F, Fantin M, Zucchini S, Brown JM, Witta J, Di Benedetto M, Buzas B, Reinscheid RK, Salvadori S, Guerrini R, Romualdi P, Candeletti S, Simonato M, Cox BM, Morari M (2005) Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci 25:9591–9601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer ME, Meyer ME (1993) Behavioral effects of opioid peptide agonists DAMGO, DPDPE, and DAKLI on locomotor activities. Pharmacol Biochem Behav 45:315–320

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    Article  CAS  PubMed  Google Scholar 

  • Morelli M, Fenu S, Di Chiara G (1989) Substantia nigra as a site of origin of dopamine-dependent motor syndromes induced by stimulation of mu and delta opioid receptors. Brain Res 487:120–130

    Article  CAS  PubMed  Google Scholar 

  • Murray CW, Cowan A (1990) [D-Pen2, D-Pen5]enkephalin, the standard delta opioid agonist, induces morphine-like behaviors in mice. Psychopharmacology (Berl) 102:425–426

    Article  CAS  Google Scholar 

  • Parkinson’s Disease Foundation (2015) pdf.org

    Google Scholar 

  • Pinna A, Di Chiara G (1998) Dopamine-dependent behavioural stimulation by non-peptide delta opioids BW 373U86 and SNC 80: 3. Facilitation of D1 and D2 responses in unilaterally 6-hydroxydopamine-lesioned rats. Behav Pharmacol 9:15–21

    CAS  PubMed  Google Scholar 

  • Pradhan AA, Becker JA, Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Massotte D, Gavériaux-Ruff C, Kieffer BL (2009) In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLoS One 4:e5425

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed B, Zhang Y, Chait BT, Kreek MJ (2003) Dynorphin A(1-17) biotransformation in striatum of freely moving rats using microdialysis and matrix-assisted laser desorption/ionization mass spectrometry. J Neurochem 86:815–823

    Article  CAS  PubMed  Google Scholar 

  • Saitoh A, Sugiyama A, Nemoto T, Fujii H, Wada K, Oka J, Nagase H, Yamada M (2011) The novel δ opioid receptor agonist KNT-127 produces antidepressant-like and antinociceptive effects in mice without producing convulsions. Behav Brain Res 223:271–279

    Article  CAS  PubMed  Google Scholar 

  • Sandyk R (1988) Enkephalinergic mechanisms in the “compensated” phase of Parkinson’s disease. Int J Neurosci 42:301–303

    Article  CAS  PubMed  Google Scholar 

  • Santiago RM, Barbiero J, Gradowski RW, Bochen S, Lima MM, Da Cunha C, Andreatini R, Vital MA (2014) Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hippocampal serotonin. Behav Brain Res 259:70–77

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  CAS  PubMed  Google Scholar 

  • Traynor JR, Elliott J (1993) Delta-opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol Sci 14:84–86

    Article  CAS  PubMed  Google Scholar 

  • Tsao LI, Ladenheim B, Andrews AM, Chiueh CC, Cadet JL, Su TP (1998) Delta opioid peptide [D-Ala2, D-leu5]enkephalin blocks the long-term loss of dopamine transporters induced by multiple administrations of methamphetamine: involvement of opioid receptors and reactive oxygen species. J Pharmacol Exp Ther 287:322–331

    CAS  PubMed  Google Scholar 

  • Tsao LI, Cadet JL, Su TP (1999) Reversal by [D-Ala2, D-Leu5]enkephalin of the dopamine transporter loss caused by methamphetamine. Eur J Pharmacol 372:R5–R7

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Pickel VM (2001) Preferential cytoplasmic localization of delta-opioid receptors in rat striatal patches: comparison with plasmalemmal mu-opioid receptors. J Neurosci 21:3242–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild KD, Fang L, McNutt RW, Chang KJ, Toth G, Borsodi A, Yamamura HI, Porreca F (1993) Binding of BW 373U86, a non-peptidic delta opioid receptor agonist, is not regulated by guanine nucleotides and sodium. Eur J Pharmacol 246:289–292

    Article  CAS  PubMed  Google Scholar 

  • Yoon HH, Park JH, Kim YH, Min J, Hwang E, Lee CJ, Suh JK, Hwang O, Jeon SR (2014) Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. Neurosurgery 74:533–540

    Article  PubMed  Google Scholar 

  • Yue X, Falk T, Zuniga LA, Szabò L, Porreca F, Polt R, Sherman SJ (2011) Effects of the novel glycopeptide opioid agonist MMP-2200 in preclinical models of Parkinson’s disease. Brain Res 1413:72–83

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Haddad GG, Xia Y (2000) Delta-, but not mu- and kappa-, opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Res 885:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Gibney GT, Zhao P, Xia Y (2002) Neuroprotective role of delta-opioid receptors in cortical neurons. Am J Physiol Cell Physiol 282:C1225–C1234

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar S. Mabrouk Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 SpringerInternationalPublishingSwitzerland

About this chapter

Cite this chapter

Mabrouk, O.S. (2016). Delta Opioid Pharmacology in Parkinson’s Disease. In: Jutkiewicz, E. (eds) Delta Opioid Receptor Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology, vol 247. Springer, Cham. https://doi.org/10.1007/164_2016_16

Download citation

Publish with us

Policies and ethics